【題目】網上購物逐步走進大學生活,某大學學生宿舍4人積極參加網購,大家約定:每個人通過擲一枚質地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(Ⅰ)求這4人中恰有1人去淘寶網購物的概率;
(Ⅱ)用ξ、η分別表示這4人中去淘寶網和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學期望EX.
【答案】解:(Ⅰ)依題意,這4個人中,每個人去淘寶網購物的概率為 ,去京東網購物的概率為 ,
設“這4個人中恰有i個人去淘寶網購物”為事件Ai(i=0,1,2,3,4),
則 ,(i=0,1,2,3,4),
這4個人中恰有1人去淘寶網購物的概率 = .
(Ⅱ)由已知得X的所有可能取值為0,3,4,
P(X=0)=P(A0)+P(A4)= = ,
P(X=3)=P(A1)+P(A3)= + = ,
P(X=4)=P(A2)= = ,
∴X的分布列為:
X | 0 | 3 | 4 |
P |
∴EX= =
【解析】(Ⅰ)依題意,這4個人中,每個人去淘寶網購物的概率為 ,去京東網購物的概率為 ,設“這4個人中恰有i個人去淘寶網購物”為事件Ai , 則 ,(i=0,1,2,3,4),由此能求出這4個人中恰有1人去淘寶網購物的概率.(Ⅱ)由已知得X的所有可能取值為0,3,4,P(X=0)=P(A0)+P(A4),P(X=3)=P(A1)+P(A3),P(X=4)=P(A2),由此能求出X的分布列和EX.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關知識點,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,圓C的方程為ρ=6sinθ
(1)求圓C的直角坐標方程;
(2)若點P(1,2),設圓C與直線l交于點A、B,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓O:x2+y2=b2經過橢圓 (0<b<2)的焦點.
(1)求橢圓E的標準方程;
(2)設直線l:y=kx+m交橢圓E于P,Q兩點,T為弦PQ的中點,M(﹣1,0),N(1,0),記直線TM,TN的斜率分別為k1 , k2 , 當2m2﹣2k2=1時,求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經過怎么的變換得到?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)經過點 ,離心率為 ,O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P為橢圓C上一動點,點A(3,0)與點P的垂直平分線交y軸于點B,求|OB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
設f(x)=|ax﹣1|.
(Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數(shù)a的值;
(Ⅱ)當a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數(shù)學成績是否與性別有關,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,先統(tǒng)計了他們期中考試的數(shù)學分數(shù),然后按性別分為男、女兩組,再將兩組學生的分數(shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分數(shù)小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分數(shù)不小于130分的學生為“數(shù)學尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認為“數(shù)學尖子生與性別有關”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·新課標1卷)已知橢圓E的中心為坐標原點,離心率為 , E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準線與E的兩個交點,則|AB|= ( )
A.3
B.6
C.9
D.12
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com