【題目】已知橢圓C: (a>b>0)經(jīng)過點 ,離心率為 ,O為坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P為橢圓C上一動點,點A(3,0)與點P的垂直平分線交y軸于點B,求|OB|的最小值.

【答案】解:(Ⅰ)離心率為 ,∴ ,故 ,
橢圓C為
把點 代入得a2=6,b2=2,
所以橢圓C的方程為 =1.
(Ⅱ)由題意,直線l的斜率存在,設(shè)點P(x0 , y0)(y0≠0),
則線段AP的中點D的坐標(biāo)為 ,且直線AP的斜率kAP= ,…(7分)
由點A(3,0)關(guān)于直線l的對稱點為P,得直線l⊥AP,
故直線l的斜率為﹣ = ,且過點D,
所以直線l的方程為: = ,
令x=0,得y= ,則B
=1,得 =6﹣3 ,化簡,得B
所以|OB|= =|y0|+ ≥2 =
當(dāng)且僅當(dāng)|y0|= ,即y0= 時等號成立.
所以|OB|的最小值為
【解析】(Ⅰ)離心率為 ,可得 ,故 ,橢圓C為 ,把點 代入橢圓方程,解出即可得出.(Ⅱ)由題意,直線l的斜率存在,設(shè)點P(x0 , y0)(y0≠0),利用中點坐標(biāo)公式可得:線段AP的中點D坐標(biāo),由點A(3,0)關(guān)于直線l的對稱點為P,得直線l⊥AP,可得直線l的斜率為﹣ = ,利用直線l的方程可得B,又 =1,得 =6﹣3 ,可得|OB|,利用基本不等式的性質(zhì)即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1=an﹣2an+1an , an≠0且a1=1
(1)求證:數(shù)列 是等差數(shù)列,并求出{an}的通項公式;
(2)令 ,求數(shù)列{bn}的前2n項的和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,分別在x軸與直線 上從左向右依次取點Ak、Bk , k=1,2,…,其中A1是坐標(biāo)原點,使△AkBkAk+1都是等邊三角形,則△A10B10A11的邊長是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sinx﹣ cosx的圖象可由函數(shù)y=sinx+ cosx的圖象至少向右平移個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax﹣1|﹣(a﹣1)x.
(i) 當(dāng)a=2時,滿足不等式f(x)>0的x的取值范圍為
(ii) 若函數(shù)f(x)的圖象與x軸沒有交點,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)上購物逐步走進大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(Ⅰ)求這4人中恰有1人去淘寶網(wǎng)購物的概率;
(Ⅱ)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,其中 ,若輸出的 ,則判斷框內(nèi)應(yīng)填入的條件為(
A.n<2017
B.n≤2017
C.n>2017
D.n≥2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)過點(0,1),且離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y= +m與橢圓E交于A、C兩點,以AC為對角線作正方形ABCD,記直線l與x軸的交點為N,問B,N兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動乒乓球運動的發(fā)展,某乒乓球比賽允許不同協(xié)會的運動員組隊參加. 現(xiàn)有來自甲協(xié)會的運動員3名,其中種子選手2名;乙協(xié)會的運動員5名,其中種子選手3名.從這8名運動員中隨機選擇4人參加比賽.
(1)設(shè)為事件“選出的4人中恰有2名種子選手,且這2名種子選手來自同一個協(xié)會”求事件發(fā)生的概率
(2)設(shè)為選出的4人中種子選手的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案