3.已知z=$\frac{4-3i}{3+4i}$+2(i為虛數(shù)單位),則z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出z的坐標(biāo)得答案.

解答 解:∵z=$\frac{4-3i}{3+4i}$+2=$\frac{(4-3i)(3-4i)}{(3+4i)(3-4i)}+2=\frac{-25i}{25}+2=2-i$,
∴z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)的坐標(biāo)為(2,-1),位于第四象限.
故選:D.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$,則z=x-2y的最小值是( 。
A.0B.$\frac{3}{2}$C.-2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a9=16,則S11=(  )
A.88B.48C.96D.176

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=log2x,y∈Z},B={1,2,3,4,5,6,7,8,9},則A∩B=( 。
A.{1,2,3,4}B.{2,4,6,8}C.{1,2,4,8}D.{2,4,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.圓x2+y2-2x+4y-3=0上的點(diǎn)到直線x-y+5=0的距離的取值范圍為(2$\sqrt{2}$,6$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A、B、C的對邊分別為a,b,c,且b(2sinB+sinA)+(2a+b)sinA=2csinC,則C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸出的x值為31,則a的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x∈N|x2-2x-3<0},B={x|lgx>0},則A∩B=( 。
A.{0,1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>0時,$xlnx>\frac{x}{e^x}-\frac{2}{e}$..

查看答案和解析>>

同步練習(xí)冊答案