函數(shù)f(x)=
1
3
x3-2x2+3x-6的單調(diào)遞減區(qū)間為
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)數(shù)f′(x),然后在定義域內(nèi)解不等式f′(x)<0即可.
解答: 解:∵f(x)=
1
3
x3-2x2+3x-6,
∴f′(x)=x2-4x+3=(x-1)(x-3),
令f′(x)<0,得1<x<3,
∴f(x)=
1
3
x3-2x2+3x-6的單調(diào)遞減區(qū)間是[1,3],
故答案為:[1,3].
點評:該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬基礎(chǔ)題,正確理解導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,Sn=
2an
a1
-1,n∈N*
(1)求a1,a2,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)a,b滿足a+b=1,求ab2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點B(-1,0),C(1,0),直線AB,AC所在直線的斜率之積等于m(m≠0),探求頂點A的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解高一學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)次測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)第二小組的頻率是多少?樣本容量是多少?
(2)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?
(3)在這次測試中,估計學(xué)生跳繩次數(shù)的眾數(shù)和中位數(shù)、平均數(shù)各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2-3x-1的圖象與x軸交點個數(shù)為
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(k)=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(k∈N*),那么f(k+1)-f(k)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x+2012|+|x+2011|+…+|x+1|+|x-1|+…+|x-2011|+|x-2012|(x∈R),且f(a2-3a+2)=f(a-1),則滿足條件的所有整數(shù)a的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+x2+x+m.
(1)當(dāng)m=0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案