2.若x<0,求f(x)=$\frac{12}{x}$+3x的最大值( 。
A.-6B.-12C.-36D.-3

分析 由x<0,可知-x>0,f(x)=$\frac{12}{x}$+3x=-[(-$\frac{12}{x}$)+(-3x)],由(-$\frac{12}{x}$)+(-3x)≥2$\sqrt{(-\frac{12}{x})•(-3x)}$=2×6=12,因此f(x)≤-12,即可求得f(x)的最大值.

解答 解:∵x<0,
∴-x>0,
f(x)=$\frac{12}{x}$+3x=-[(-$\frac{12}{x}$)+(-3x)],
∵(-$\frac{12}{x}$)+(-3x)≥2$\sqrt{(-\frac{12}{x})•(-3x)}$=2×6=12,
(當且僅當(-$\frac{12}{x}$)=(-3x),即x=-2時取最大值),
∴f(x)≤-12,
∴f(x)=$\frac{12}{x}$+3x的最大值為-12,
故答案選:B.

點評 本題考查基本不等式的應(yīng)用,考查轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)i是虛數(shù)單位,若復數(shù)a+$\frac{6+2i}{i-1}$(a∈R)是純虛數(shù),則a=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知命題p:方程x2+2ax+1=0有兩個大于-1的實數(shù)根,命題q:關(guān)于x的不等式ax2-ax+1>0的解集為R,若“p或q”與“¬q”同時為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)α、β、γ滿足0<α<β<γ<2π,若cos(x+α)+cos(x+β)+cos(x+γ)=0對任意實數(shù)x均成立,則α-β的值是( 。
A.$-\frac{π}{3}$B.$-\frac{2π}{3}$C.$-\frac{4π}{3}$D.$-\frac{2π}{3}$或$-\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.一只螞蟻在邊長分別為2,$2\sqrt{3}$,4的三角形內(nèi)爬行,某時刻此此螞蟻距離頂點三角形的距離均不超過1的概率為( 。
A.$\frac{{\sqrt{3}π}}{12}$B.$\frac{{\sqrt{3}π}}{6}$C.$1-\frac{{\sqrt{3}π}}{6}$D.$1-\frac{{\sqrt{3}π}}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下面為函數(shù)y=xsinx+cosx的遞增區(qū)間的是( 。
A.($\frac{π}{2}$,$\frac{3π}{2}$)B.(π,2π)C.(0,$\frac{π}{2}$)D.(2π,3π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.復數(shù)z=(sinθ-2cosθ)+(sinθ+2cosθ)i是純虛數(shù),則sinθcosθ=( 。
A.-$\frac{5}{2}$B.-$\frac{2}{5}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.三棱錐P-ABC中,PA=4,∠PBA=∠PCA=90°,△ABC是邊長為2的等邊三角形,則三棱錐P-ABC的外接球球心到平面ABC的距離是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則log3$\frac{y}{x}$的取值范圍為[0,1].

查看答案和解析>>

同步練習冊答案