分析 畫出約束條件的可行域,求出$\frac{y}{x}$的范圍,然后求解對數(shù)函數(shù)的值域即可.
解答 解:x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,的可行域如圖:
$\frac{y}{x}$的幾何意義是可行域內(nèi)的點與坐標原點連線的斜率,由可行域可知1≤$\frac{y}{x}$≤kOA,
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,可得A(1,3),kOA=3.
$\frac{y}{x}$∈[1,3].
log3$\frac{y}{x}$∈[0,1].
故答案為:[0,1].
點評 本題考查線性規(guī)劃的應(yīng)用,考查數(shù)形結(jié)合以及轉(zhuǎn)化思想的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | -$\frac{1}{5}$-$\frac{3}{5}$i | C. | -$\frac{1}{5}$+$\frac{3}{5}$i | D. | $\frac{1}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{3}}$)∪(${\frac{1}{3}$,+∞) | B. | (-∞,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,+∞) | C. | (-2,-$\frac{1}{3}}$]∪[${\frac{1}{3},2}$) | D. | [-2,-$\frac{1}{3}}$]∪[${\frac{1}{3}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | -3 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com