【題目】如圖(1)是一正方體的表面展開圖,MN和PB是兩條面對角線,請?jiān)趫D(2)的正方體中將MN和PB畫出來,并就這個(gè)正方體解決下面問題。

(1)求證:MN∥平面PBD;

(2)求證:平面;

(3)求PB和平面NMB所成的角的大。

【答案】(1)見解析;(2)見解析;(3)

【解析】

由展開圖還原出原圖形,由正方體可證MN//DB,進(jìn)一步證明MN∥平面PBD。通過證明平面,可證,同理可得,所以面PDB。連結(jié)BE,則為PB和平面NMB所成的角。

MN和PB的位置如右圖示:

(1)∵ND∥MB 且ND=MB,∴四邊形NDBM為平行四邊形

∴MN//DB

平面PDB,平面PDB

∴MN∥平面PBD

(2)∵平面ABCD,平面,∴

又∵平面,

,同理可得,∵

面PDB

(3)連結(jié)PQ交MN于點(diǎn)E,

,

平面

連結(jié)BE,則為PB和平面NMB所成的角

在直角三角形PEB中∵=30°.

即PB和平面NMB所成的角為30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在去年的足球甲聯(lián)賽上,一隊(duì)每場比賽平均失球數(shù)是1.5,全年比賽失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;二隊(duì)每場比賽平均失球數(shù)是2.1,全年失球個(gè)數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個(gè)數(shù)有( )

①平均來說一隊(duì)比二隊(duì)防守技術(shù)好;②二隊(duì)比一隊(duì)防守技術(shù)水平更穩(wěn)定;③一隊(duì)防守有時(shí)表現(xiàn)很差,有時(shí)表現(xiàn)又非常好;④二隊(duì)很少不失球.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,面為直角梯形, ,平面平面 , 是邊長為2的正三角形.

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;

②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

③線性回歸直線必過

④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;

⑤在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079.則其兩個(gè)變量間有關(guān)系的可能性是90%.

其中錯誤的個(gè)數(shù)是( )

A. 1 B. 2

C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)D在BC邊上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,則BD的長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,角,的內(nèi)角,其所對的邊分別為,.

(1)當(dāng)取得最大值時(shí),求角的大;

(2)在(1)成立的條件下,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某射擊運(yùn)動員,每次擊中目標(biāo)的概率都是.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動員射擊次至少擊中次的概率:先由計(jì)算器算出之間取整數(shù)值的隨機(jī)數(shù),指定,表示沒有擊中目標(biāo),,,,,,表示擊中目標(biāo);因?yàn)樯鋼?/span>次,故以每個(gè)隨機(jī)數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下組隨機(jī)數(shù):

據(jù)此估計(jì),該射擊運(yùn)動員射擊次至少擊中次的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,是正三角形,的交點(diǎn)恰好是中點(diǎn),又,,點(diǎn)在線段上,且

)求證:

)求證:平面

)設(shè)平面平面,試問:直線是否與直線平行,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案