2.已知集合A={1,2,3},B={x|x2<9},則A∩B=( 。
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}

分析 先求出集合A和B,由此利用交集的定義能求出A∩B的值.

解答 解:∵集合A={1,2,3},B={x|x2<9}={x|-3<x<3},
∴A∩B={1,2}.
故選:D.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算不定積分∫(4x3-3x2+2x-1)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$,則|$\overrightarrow{a}$+2$\overrightarrow$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條相互垂直的半徑.若該幾何體的體積是$\frac{28π}{3}$,則它的表面積是( 。
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是( 。
A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=[an],求數(shù)列{bn}的前10項(xiàng)和,其中[x]表示不超過(guò)x的最大整數(shù),如[0.9]=0,[2.6]=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從甲、乙等5名學(xué)生中隨機(jī)選出2人,則甲被選中的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{8}{25}$D.$\frac{9}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,△KLM為等腰直角三角形,∠KML=90°,KL=1,則f($\frac{1}{12}$)的值為(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{8}$B.$\frac{\sqrt{2}+\sqrt{6}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(Ⅰ)證明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案