【題目】已知數(shù)列{an}的前n項和為Sn,且滿足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=log2an,Tn為{bn}的前n項和,求證 <2.
【答案】(1)an=22n-1.(2)見解析
【解析】試題分析:(I)利用數(shù)列遞推關(guān)系、等比數(shù)列的通項公式即可得出.
(II)利用“裂項求和”方法、數(shù)列的單調(diào)性即可得出.
試題解析:
(Ⅰ)當(dāng)n≥3時,可得Sn-4Sn-1-2-(Sn-1-4Sn-2-2)=0(n≥2,n∈Z).∴an=4an-1,
又因為a1=2,代入表達式可得a2=8,滿足上式.
所以數(shù)列{an}是首項為a1=2,公比為4的等比數(shù)列,故:an=2×4n-1=22n-1.
(Ⅱ)證明:bn=log2an=2n-1.
Tn==n2.
n≥2時,=<=. ≤1++…+=2-<2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為 .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有紅色、白色球各一個,每次任取一個,有放回地抽三次,計算下列事件的概率:
(1)三次顏色恰有兩次同色;
(2)三次顏色全相同;
(3)三次抽取的球中紅色球出現(xiàn)的次數(shù)多于白色球出現(xiàn)的次數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③如果直線l經(jīng)過兩個不同的整點,則直線l必經(jīng)過無窮多個整點;
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù);
⑤存在恰經(jīng)過一個整點的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標為xn , 則log2017x1+log2017x2+…+log2017x2016的值為( )
A.﹣log20172016
B.﹣1
C.log20172016﹣1
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上三個向量 的模均為1,它們相互之間的夾角均為120°.
(1)求證: ;
(2)若|k |>1 (k∈R),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足x2-5ax+4a2<0(其中a>0),q:實數(shù)x滿足2<x≤5.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若q是p的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A是實數(shù)集R的子集,如果x0∈R滿足:對任意a>0,都存在x∈A,使得0<|x﹣x0|<a,則稱x0為集合A的聚點,給出下列集合(其中e為自然對數(shù)的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1為聚點的集合有( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=ax+b,a>0,且a≠1,x∈R}.
(1)若A∩B=[0,4],求m的值;
(2)若A∩C只有一個子集,求b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com