【題目】已知橢圓的離心率為,點(diǎn)為橢圓上一點(diǎn).

1)求橢圓C的方程;

2)已知兩條互相垂直的直線,經(jīng)過(guò)橢圓的右焦點(diǎn),與橢圓交于四點(diǎn),求四邊形面積的的取值范圍.

【答案】1;(2

【解析】

1)由題意可得,解得進(jìn)而得到橢圓的方程;(2)設(shè)出直線l1l2的方程,直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,分別求得|AB|,|MN|,再由四邊形的面積公式,化簡(jiǎn)整理計(jì)算即可得到取值范圍.

1)由題意可得,解得a24,b23,c21

故橢圓C的方程為

2)當(dāng)直線l1的方程為x1時(shí),此時(shí)直線l2x軸重合,

此時(shí)|AB|3,|MN|4,

∴四邊形AMBN面積為S|AB||MN|6

設(shè)過(guò)點(diǎn)F10)作兩條互相垂直的直線l1xky+1,直線l2xy+1,

xky+1和橢圓1,可得(3k2+4y2+6ky90,

判別式顯然大于0,y1+y2,y1y2

|AB|,

把上式中的k換為,可得|MN|

則有四邊形AMBN面積為S|AB||MN|,

1+k2t,則3+4k24t1,3k2+43+1,

S,

t1,

01,

y=﹣(2,在(0,)上單調(diào)遞增,在(,1)上單調(diào)遞減,

y12,],

S[,6

故四邊形PMQN面積的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,點(diǎn)在橢圓上.

)求橢圓的標(biāo)準(zhǔn)方程.

)是否存在斜率為的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn),時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),直線與拋物線交于兩點(diǎn),若,則( )

A. B. 8 C. 16 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出呼叫信號(hào),我海軍艦艇在處獲悉后,立即測(cè)出該漁船在方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為,距離為15海里的處,并測(cè)得漁船正沿方位角為的方向,以15海里/小時(shí)的速度向小島靠攏,我海軍艦艇立即以海里/小時(shí)的速度前去營(yíng)救,求艦艇靠近漁船所需的最少時(shí)間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)直線,直線,直線的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點(diǎn)在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假.

1)過(guò)一條直線的平面有無(wú)數(shù)多個(gè);

2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無(wú)數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上;

3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段;

4)兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在2018年3月鄭州第二次模擬考試中,某校共有100名文科學(xué)生參加考試,其中語(yǔ)文考試成績(jī)低于130的占95%人,數(shù)學(xué)成績(jī)的頻率分布直方圖如圖:

(Ⅰ)如果成績(jī)不低于130的為特別優(yōu)秀,這100名學(xué)生中本次考試語(yǔ)文、數(shù)學(xué)成績(jī)特別優(yōu)秀的大約各多少人?

(Ⅱ)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有3人.

(ⅰ)從(Ⅰ)中的這些同學(xué)中隨機(jī)抽取2人,求這兩人兩科成績(jī)都優(yōu)秀的概率.

(ⅱ)根據(jù)以上數(shù)據(jù),完成列聯(lián)表,并分析是否有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

語(yǔ)文特別優(yōu)秀

語(yǔ)文不特別優(yōu)秀

合計(jì)

數(shù)學(xué)特別優(yōu)秀

數(shù)學(xué)不特別優(yōu)秀

合計(jì)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案