已知(x2+
k
x
6(k∈N*)的展開(kāi)項(xiàng)的常數(shù)系數(shù)小于120,則k=
 
考點(diǎn):二項(xiàng)式定理的應(yīng)用
專(zhuān)題:二項(xiàng)式定理
分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0求出常數(shù)項(xiàng),列出不等式解得.
解答: 解:(x2+
k
x
6(k∈N*)的展開(kāi)項(xiàng)的通項(xiàng)為
C
r
6
x2(6-r)(
k
x
)r=kr
C
r
6
x12-3r
,當(dāng)12-3r=0時(shí),即r=4時(shí),得常數(shù)項(xiàng)為k4
C
4
6
=15k4<120,k4<8,k∈N*,k=1;
故答案為:1.
點(diǎn)評(píng):題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
a
b
方向上的投影為 (  )
A、-
3
3
2
B、
3
3
2
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1+a2+…+an=n2
(1)在數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
an
2n
)
的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本數(shù)據(jù)3,4,5,x,y的平均數(shù)是5,標(biāo)準(zhǔn)差是
2
,則xy=( 。
A、42B、40C、36D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,AB=2,點(diǎn)C在圓O上,且∠ABC=60°,V到圓O所在的平面的距離為3,且VC垂直于圓O所在的平面,D,E分別是VA,VC的中點(diǎn).
(1)求證:DE⊥平面VBC;
(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一家5口春節(jié)回老家探親,買(mǎi)到了如下圖的一排5張車(chē)票:

其中爺爺行動(dòng)不便要坐靠近走廊的位置,小孫女喜歡熱鬧要坐在左側(cè)三個(gè)連在一起的座位之一,則座位的安排方式一共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)滿足g(x+2)=g(2-x),f(x)=
g(x)(x≠2)
1(x=2)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的實(shí)數(shù)解x1,x2,x3,則x1+x2+x3=( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的側(cè)棱都相等,底面ABCD是正方形,O為對(duì)角線AC、BD的交點(diǎn),PO=OA,求直線PA與面ABCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐P-ABC的主視圖、俯視圖如圖所示,則該正三棱錐的左視圖的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案