A. | 平行 | B. | 相交 | C. | 異面 | D. | 垂直 |
分析 由已知EF為三角形ABD的中位線(xiàn),從而EF∥BD且EF=$\frac{1}{2}$BD,由$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,得在四邊形EFHG中,EF∥HG,即E,F(xiàn),G,H四點(diǎn)共面,且EF≠HG,由此能得出結(jié)論.
解答 解::∵四邊形ABCD是空間四邊形,E、F分別是AB、AD的中點(diǎn),
∴EF為三角形ABD的中位線(xiàn)
∴EF∥BD且EF=$\frac{1}{2}$BD
又∵$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,
∴△CHG∽△CDB,且HG∥BD,HG=$\frac{1}{3}$BD
∴在四邊形EFHG中,EF∥HG
即E,F(xiàn),G,H四點(diǎn)共面,且EF≠HG,
∴四邊形EFGH是梯形,
∴直線(xiàn)FH與直線(xiàn)EG相交,
故選B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平行線(xiàn)分線(xiàn)段成比例定理,是基礎(chǔ)題,根據(jù)已知條件,判斷出EF∥HG且EF≠HG,是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | 1 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [4,8 ) | B. | (4,8] | C. | (4,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 7 | C. | 4+4$\sqrt{2}$ | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 94 | B. | 99 | C. | 45 | D. | 203 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com