7.已知cosβ=-$\frac{2}{3}$,(0<β<π),求:sin$\frac{β}{2}$,cos$\frac{β}{2}$,tan$\frac{β}{2}$的值.

分析 由條件利用二倍角公式、同角三角函數(shù)的基本關(guān)系,求得sin$\frac{β}{2}$,cos$\frac{β}{2}$,tan$\frac{β}{2}$的值.

解答 解:∵cosβ=-$\frac{2}{3}$=2cos2β-1,(0<β<π),∴cos$\frac{β}{2}$=$\frac{\sqrt{6}}{6}$;
再根據(jù)cosβ=-$\frac{2}{3}$=1-2sin2β,求得sin$\frac{β}{2}$=$\frac{\sqrt{5}}{6}$;
∴tan$\frac{β}{2}$=$\frac{sin\frac{β}{2}}{cos\frac{β}{2}}$=$\sqrt{\frac{5}{6}}$=$\frac{\sqrt{30}}{6}$.

點評 本題主要考查二倍角公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|\\;0<x<3}\\{sin(\frac{π}{6}x)\\;3≤x≤15}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,則x1x2x3x4取值范圍是( 。
A.(60,96)B.(45,72)C.(30,48)D.(15,24)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a1+2a2+3a3+…+nan=$\frac{1}{4}$[(2n-1)an+1+1],a1=1,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,}&{x≥0}\\{ax+b,}&{x<0}\end{array}\right.$ 滿足條件,對于?x1∈R,存在唯一的x2∈R,使得f(x1)=f(x2).當f(2a)=f(3b)成立時,則實數(shù)a+b=(  )
A.$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{2}$+3D.-$\frac{\sqrt{6}}{2}$+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.等比數(shù)列{an}的通項公式是an=-3×22-n,則它的首項a1=-6,公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.電流I隨時間t變化的函數(shù)關(guān)系式為I=5sin(100πt+$\frac{π}{3}$),t∈[0,+∞),則初相為(  )
A.5B.$\frac{1}{50}$C.$\frac{π}{3}$D.100πt+$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知關(guān)于x的方程x2-(5+i)x+4+ai=0(a∈R)有實數(shù)根b,則|a+bi|等于(  )
A.$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{2}$或4$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.化簡下列各式:
(1)$\frac{cosα-sinα}{1-tanα}$;(2)$\frac{2co{s}^{2}α-1}{1-2si{n}^{2}α}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若向量$\overrightarrow a=(cosθ{,_{\;}}sinθ)$,$\overrightarrow b=(\sqrt{3}{,_{\;}}-1)$.
(1)若$\overrightarrow a⊥\overrightarrow{b,}$且$θ∈(0,\frac{π}{2})$,求θ的值;
(2)若θ∈[0,π],求$|2\overrightarrow a-\overrightarrow b|$的最大值.

查看答案和解析>>

同步練習冊答案