20.若a,b∈[0,1],則不等式a2+b2≤1成立的概率為( 。
A.$\frac{π}{16}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{4}$

分析 本題是幾何概型的考查,求出區(qū)域的面積,利用面積比求得概率.

解答 解:a,b∈[0,1],對應(yīng)區(qū)域是邊長為1 的正方形,不等式a2+b2≤1滿足區(qū)域為單位圓的第一象限部分,面積為$\frac{π}{4}$,
由幾何概型的公式得到:a,b∈[0,1],則不等式a2+b2≤1成立的概率為:$\frac{π}{4}$;
故選D

點評 本題考查了幾何概型的概率求法;關(guān)鍵是利用區(qū)域面積比求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=cos(2x+φ)(0≤φ≤π)是R上的奇函數(shù),則φ的值是( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)是同一函數(shù)的是( 。
A.f(x)=$\frac{{x}^{2}-x}{x}$,g(x)=x-1B.f(u)=$\sqrt{\frac{1+u}{1-u}}$,g(v)=$\sqrt{\frac{1+v}{1-v}}$
C.f(x)=1,g(x)=x0D.f(x)=x,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}2x+y-7≤0\\ x-y-2≤0\\ x-2≥0\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖①所示,四邊形ABCD為等腰梯形,AD∥BC,且AD=$\frac{1}{3}$BC=a,∠BAD=135°,AE⊥BC于點E,F(xiàn)為BE的中點.將△ABE沿著AE折起至△AB′E的位置,得到如圖②所示的四棱錐B′-ADCE.
(1)求證:AF∥平面B′CD;
(2)若平面AB′E⊥平面AECD,求二面角B′-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)x=0.50.5,y=0.51.3,z=1.30.5,則x,y,z的大小關(guān)系為( 。
A.x<y<zB.x<z<yC.y<x<zD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某個長方體被一個平面所截,得到的幾何體的三視圖如圖所示,則這個幾何體的體積為( 。 
A.4B.2$\sqrt{2}$C.4$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,滿足f(xy)=f(x)+f(y)的單調(diào)遞增函數(shù)是(  )
A.$f(x)={({\frac{1}{2}})^x}$B.f(x)=2xC.$f(x)={log_{\frac{1}{2}}}$xD.f(x)=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),則不等式f($\frac{x}{3}$)+f(2x-1)>0的解集是( 。
A.(-∞,$\frac{3}{7}$)B.[-$\frac{1}{2}$,+∞)C.(-6,-$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{3}{7}$)

查看答案和解析>>

同步練習(xí)冊答案