17.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=a?f3(x)-b?g(x)-2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為( 。
A.-5B.-9C.-7D.-1

分析 根據(jù)條件構(gòu)造新函數(shù)h(x)+2判斷函數(shù)h(x)+2的奇偶性,結(jié)合函數(shù)奇偶性和最值之間的關(guān)系建立方程進(jìn)行求解即可.

解答 解:由h(x)=a?f3(x)-b?g(x)-2得h(x)+2=a?f3(x)-b?g(x),
∵函數(shù)f(x)和g(x)均為奇函數(shù),
∴h(x)+2=a?f3(x)-b?g(x)是奇函數(shù),
∵h(yuǎn)(x)=a?f3(x)-b?g(x)-2在區(qū)間(0,+∞)上有最大值5,
∴hmax(x)=a?f3(x)-b?g(x)-2=5,
即hmax(x)+2=7,
∵h(yuǎn)(x)+2是奇函數(shù),
∴hmin(x)+2=-7,即hmin(x)=-7-2=-9,
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)最值的求解,根據(jù)函數(shù)奇偶性的性質(zhì)構(gòu)造方程,結(jié)合函數(shù)最值和奇偶性之間的對稱性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線在左支相交于A、B兩點(diǎn).如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(1-x)6(1+2x)展開式中含有x5項(xiàng)的系數(shù)為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將二進(jìn)制數(shù)10101(2)化為四進(jìn)制數(shù),結(jié)果為111(4);918與714的最大公約數(shù)為102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知E,F(xiàn),G,H為空間四邊形ABCD的四條邊上的點(diǎn),且四邊形EFGH為平行四邊形.證明:
(1)EH∥平面BCD
(2)BD∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)平面內(nèi),把橫坐標(biāo)與縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).已知區(qū)域D:$\left\{\begin{array}{l}{y≤2x}\\{x+y≤n}\\{y≥0}\end{array}\right.$,其中n∈N*.記區(qū)域D內(nèi)的整點(diǎn)個(gè)數(shù)為an
(1)求a1,a2,a3的值;
(2)求an的表達(dá)式(n≥4,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)是定義在R上周期為2的偶函數(shù),且當(dāng)x∈[0,1]時(shí),f(x)=2x-1,則函數(shù)g(x)=f(x)-log5|x|的零點(diǎn)個(gè)數(shù)是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若圓x2+y2-4x-4y-10=0上至少有三個(gè)不同點(diǎn)到直線l:x-y+b=0的距離為$2\sqrt{2}$,則b的取值范圍是( 。
A.[-2,2]B.[-10,10]C.(-∞,-10]∪[10,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.國內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
運(yùn)動(dòng)時(shí)間
性別
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生36
女生26
合計(jì)100
(1)請根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過計(jì)算判斷能否在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)為了進(jìn)一步了解學(xué)生的運(yùn)動(dòng)情況及體能,對樣本中的甲、乙兩位運(yùn)動(dòng)達(dá)人男生1500米的跑步成績進(jìn)行測試,對多次測試成績進(jìn)行統(tǒng)計(jì),得到甲1500米跑步成績的時(shí)間范圍是[4,5](單位:分鐘),乙1500米跑步成績的時(shí)間范圍是[4.5,5.5](單位:分鐘),現(xiàn)同時(shí)對甲、乙兩人進(jìn)行1500米跑步測試,求乙比甲跑得快的概率.
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案