8.(1-x)6(1+2x)展開(kāi)式中含有x5項(xiàng)的系數(shù)為24.

分析 (1-x)6(1+2x)的展開(kāi)式中x5項(xiàng)由兩部分相加得到:①(1+2x)中的常數(shù)項(xiàng)與(1-x)6展開(kāi)式中的x5項(xiàng); ②(1+2x)中的x項(xiàng)與(1-x)6展開(kāi)式中的x4項(xiàng).分別求系數(shù)再相加即可.

解答 解:∵(1-x)6(1+2x)的展開(kāi)式中x5項(xiàng)由兩部分相加得到:
①(1+2x)中的常數(shù)項(xiàng)與(1-x)6展開(kāi)式中的x5項(xiàng)
②(1+2x)中的x項(xiàng)與(1-x)6展開(kāi)式中的x4項(xiàng).
分別求系數(shù)再相加即可.
(1-x)6的展開(kāi)式 的通項(xiàng)為T(mén)r+1=(-1)rC6rxr
∴(1-x)6(1+2x)的展開(kāi)式中x5的系數(shù)等于-1×C65+2×C64=24,
故答案為24.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,要注意本題中所求系數(shù)應(yīng)由兩部分組成.否則易出錯(cuò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某公司生產(chǎn)的某產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
時(shí)間:(第x天)13610
日銷(xiāo)量(m件)198194188180
①該產(chǎn)品90天內(nèi)日銷(xiāo)量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
②該產(chǎn)品90天內(nèi)銷(xiāo)售價(jià)格(元/件)與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間:(第x天)1≤x<5050≤x<90
銷(xiāo)售價(jià)格(元/件)x+60100
(1)求m關(guān)于x的函數(shù)關(guān)系;
(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y元,求y關(guān)于x的函數(shù)表達(dá)式;并求出在90天內(nèi)該產(chǎn)品哪天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?[每天利潤(rùn)=日銷(xiāo)量x(銷(xiāo)售價(jià)格-每件成本)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.將y=sin($ωx+\frac{π}{4}$)圖象向右平移$\frac{π}{4}$單位長(zhǎng)度后,與原圖圖象重合,則正數(shù)ω最小值為( 。
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3.\end{array}\right.$,則z=3x-y的最小值為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.用秦九韶算法求f(x)=2x3-x2+4x+3,需要加法與乘法運(yùn)算的次數(shù)分別為(  )
A.2,3B.3,3C.3,2D.2,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(1)求sinx-cosx的值;   
 (2)求$\frac{1}{cos2x-sin2x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,四邊形ABCD是邊長(zhǎng)為4菱形,O是AC與BD的交點(diǎn),∠ABC=120°,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF=2$\sqrt{2}$.
(1)求證:EO⊥平面AFC;
(2)求直線AE與直線CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=a?f3(x)-b?g(x)-2在區(qū)間(0,+∞)上有最大值5,那么h(x)在(-∞,0)上的最小值為( 。
A.-5B.-9C.-7D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知$sin(\frac{π}{3}-α)=-\frac{2}{5}$,則$cos(\frac{2015π}{3}-2a)$=(  )
A.$\frac{7}{8}$B.$-\frac{7}{8}$C.$\frac{17}{25}$D.$-\frac{17}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案