一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數(shù)表達式;

(2)求的值,使體積V最大;

(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

 

(1);(2);(3)是.

【解析】

試題分析:(1)本題求直四棱柱的體積,關鍵是求底面面積,我們要用底面半徑1和表示出等腰梯形的上底和高,從圖形中可知高為,而,因此面積易求,體積也可得出;(2)我們在(1)中求出,這里的最大值可利用導數(shù)知識求解,求出,解出方程上的解,然后考察在解的兩邊的正負性,確定是最大值點,實質上對應用題來講,導數(shù)值為0的那個唯一點就是要求的極值點);(3),上(2)我們可能把木梁的表面積用表示出來,,由于在體積中出現(xiàn),因此我們可求的最大值,這里可不用導數(shù)來求,因為

,可借助二次函數(shù)知識求得最大值,如果這里取最大值時的取最大值的取值相同,則結論就是肯定的.

試題解析:(1)梯形的面積

=,. 2分

體積. 3分

(2)

,得,或(舍).

,∴. 5分

時,為增函數(shù);

時,,為減函數(shù). 7分

∴當時,體積V最大. 8分

(3)木梁的側面積=,

=. 10分

,.∵

∴當,即時,最大. 12分

又由(2)知時,取得最大值,

所以時,木梁的表面積S最大. 13分

綜上,當木梁的體積V最大時,其表面積S也最大. 14分

考點:(1)函數(shù)解析式;(2)用導數(shù)求最值;(3)四棱柱的表面積及其最值.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年江西省上饒市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖像上,且過點的切線的斜率為.

(1)求數(shù)列的通項公式;

(2)設,等差數(shù)列的任一項,其中中所有元素的最小數(shù),,求的通項公式.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省高三百校聯(lián)合調研測試(一)數(shù)學試卷(解析版) 題型:解答題

如圖,是直角梯形,∠=90°,,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.

(1)求二面角的的余弦值;

(2)求點到面的距離.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省高三百校聯(lián)合調研測試(一)數(shù)學試卷(解析版) 題型:填空題

一個社會調查機構就某地居民的月收入調查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖).為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10 000人中再用分層抽樣方法抽出100人作進一步調查,則在[2500,3000)(元)月收入段應抽出 人.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調研考試理科數(shù)學試卷(解析版) 題型:解答題

已知矩陣,,計算

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調研考試理科數(shù)學試卷(解析版) 題型:填空題

如圖,在△ABC中,BO為邊AC上的中線,,設,若,則的值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調研考試理科數(shù)學試卷(解析版) 題型:填空題

執(zhí)行如圖所示的算法流程圖,則最后輸出的等于 .

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省連云港市高三3月第二次調研考試文科數(shù)學試卷(解析版) 題型:填空題

從甲,乙,丙,丁4個人中隨機選取兩人,則甲乙兩人中有且只有一個被選取的概率為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調查(一)理科數(shù)學試卷(解析版) 題型:填空題

四棱錐P ? ABCD 的底面ABCD是邊長為2的正方形,PA⊥底面ABCD且PA=4,則PC與底面ABCD所成角的正切值為 .

 

查看答案和解析>>

同步練習冊答案