16.關(guān)于x的不等式(ax+1)(1+x)<0成立的一個(gè)充分而不必要條件是-2<x<-1,則實(shí)數(shù)a的取值范圍是[0,$\frac{1}{2}$).

分析 依題意,分類討論,解不等式(ax+1)(x+1)<0得其解集,進(jìn)而結(jié)合充分、必要條件與集合間包含關(guān)系的對(duì)應(yīng)關(guān)系可得不等式,解可得答案.

解答 解:不等式(ax+1)(1+x)<0成立的一個(gè)充分而不必要條件是-2<x<-1,
當(dāng)a=0時(shí),不等式為x<-1,滿足,
當(dāng)a=1時(shí),不等式的解集為空集,不滿足一個(gè)充分而不必要條件是-2<x<-1,
因?yàn)榉匠蹋╝x+1)(1+x)=0的兩個(gè)根為x=-$\frac{1}{a}$或a=-1,
若一個(gè)充分而不必要條件是-2<x<-1,$\left\{\begin{array}{l}{a>0}\\{-\frac{1}{a}<-2}\end{array}\right.$,解得0<a<$\frac{1}{2}$
綜上所述a的取值范圍為[0,$\frac{1}{2}$),
故答案為:[0,$\frac{1}{2}$),

點(diǎn)評(píng) 本題考查充分、必要條件的判斷及運(yùn)用,注意與集合間關(guān)系的對(duì)應(yīng)即可,需要分類討論,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,則角A=( 。
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則下面結(jié)論正確的是(  )
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對(duì)稱D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-2alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式$f(x)≥{x^2}-\frac{2a}{e}•{e^x}+{a^2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.2名廚師和3位服務(wù)員共5人站成一排合影,若廚師甲不站兩端,3位服務(wù)員中有且只有兩位服務(wù)員相鄰,則不同排法的種數(shù)是(  )
A.60B.48C.42D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A為雙曲線Γ的左頂點(diǎn),點(diǎn)M(x1,y1)(x1>0,y1>0)為雙曲線Γ漸近線上的一點(diǎn),且$\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow 0,\overrightarrow{OM},\overrightarrow{ON}$均為焦距的一半,若$∠MAN=\frac{2π}{3}$,則雙曲線Γ的漸近線為( 。
A.$y=±\frac{{2\sqrt{3}}}{3}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.$y=±\frac{{2\sqrt{5}}}{5}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.以下四個(gè)命題中,真命題的個(gè)數(shù)是 ( 。
①若a+b≥2,則a,b中至少有一個(gè)不小于1;
②$\overrightarrow{a}$•$\overrightarrow$=0是$\overrightarrow{a}$⊥$\overrightarrow$的充要條件;
③?x∈[0,+∞),x3+x≥0;
④函數(shù)y=f(x+1)是奇函數(shù),則y=f(x)的圖象關(guān)于(1,0)對(duì)稱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\frac{e^x}{x}$.
(1)若曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為ax-y=0,求x0的值;
(2)當(dāng)x>0時(shí),求證:f(x)>x;
(3)設(shè)函數(shù)F(x)=f(x)-bx,其中b為實(shí)常數(shù),試討論函數(shù)F(x)的零點(diǎn)個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)$f(x)=alnx+\frac{1}{x}+\frac{1}{{2{x^2}}},a∈R$.
(1)a=2時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)證明:$({x-1})({{e^{-x}}-x})+2lnx<\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案