已知函數(shù)f(x)=x2(x+1),則f′(-1)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)的導(dǎo)數(shù),即可得到結(jié)論.
解答: 解:∵f(x)=x2(x+1)=x3+x2
∴函數(shù)的導(dǎo)數(shù)為f′(x)=3x2+2x,
則f′(-1)=3-2=1,
故答案為:1
點(diǎn)評(píng):本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐底面正方形的邊長(zhǎng)為4cm,高與斜高夾角為35°,則斜高為
 
;側(cè)面積為
 
;全面積為
 
.(單位:精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m、l是直線,a、β是平面,給出下列命題:
(1)若l垂直于α內(nèi)兩條相交直線,則l⊥α;
(2)若l平行于α,則l平行于α內(nèi)的所有直線;
(3)若m?α,l?β,且l⊥m,則α⊥β;
(4)若l?β,且l⊥α,則α⊥β;
(5)若m?α,l?β,且α∥β,則l∥m.
其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的半徑為2,圓心在x軸的正半軸上,直線3x+4y+4=0與圓C相切,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①若y=±
3
x是一個(gè)雙曲線的兩條漸近線,則這個(gè)雙曲線的離心率為2;
②設(shè)l,m是兩條不同的直線,α,β是兩個(gè)不同的平面,若α⊥β,α∩β=l,m⊥l,則m⊥β;
③若P或q 為假命題,則p、q均為假命題;
④若f(x)=1-|x-1|(x>0),則函數(shù)F(x)=xf(x)-1只有一個(gè)零點(diǎn),
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于兩個(gè)變量的線性相關(guān),下列說法:①線性回歸就是由樣本點(diǎn)去尋找一條直線,貼近這些樣本點(diǎn)的數(shù)學(xué)方法;②線性回歸直線方程最能代表觀測(cè)值x,y之間的關(guān)系; ③最小二乘法是指把各個(gè)離差加起來作總離差,使之達(dá)到最小值的方法;④回歸直線方程
y
=a+bx的系數(shù)b,a可用公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x
計(jì)算,其中所有正確的說法是( �。�
A、①②③B、①③④
C、①②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊分別為a=3,b=4,c=5,則
AB
BC
+
BC
CA
+
CA
AB
=(  )
A、-50B、-25
C、25D、50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)定義域?yàn)镽,且在(-∞,0)上是減函數(shù),又A,B是銳角三角形的兩個(gè)內(nèi)角,則(  )
A、f(sinA)>f(sinB)
B、f(cosA)<f(cosB)
C、f(sinA)<f(cosB)
D、f(sinA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x2-1在點(diǎn)A(-1,0)處的切線斜率為( �。�
A、-2B、-1C、0D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案
閸忥拷 闂傦拷