14.已知函數(shù)f(x)=sin(2x+φ),若$f(\frac{π}{12})-f(-\frac{5π}{12})=2$,則函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

分析 由條件可得$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,且-$\frac{5π}{6}$+φ=2kπ-$\frac{π}{2}$,k∈Z,求得φ的值,可得f(x)的解析式,再利用正弦函數(shù)的單調(diào)性得出結(jié)論.

解答 解:∵函數(shù)f(x)=sin(2x+φ),若$f(\frac{π}{12})-f(-\frac{5π}{12})=2$,
則函數(shù)的周期為π,f($\frac{π}{12}$)=sin($\frac{π}{6}$+φ)=1,f(-$\frac{5π}{12}$)=sin(-$\frac{5π}{6}$+φ)=-1,
故$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,且-$\frac{5π}{6}$+φ=2kπ-$\frac{π}{2}$,k∈Z,即φ=2kπ+$\frac{π}{3}$,k∈Z.
故取φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$ ).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,
故答案為:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

點評 本題主要考查正弦函數(shù)的圖象特征,正弦函數(shù)的值域、單調(diào)性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,橢圓的上頂點為D,右焦點為F2,延長DF2交橢圓于E,且滿足|DF2|=3|F2E|,橢圓的右焦點與拋物線y2=4x的焦點重合.
(1)試求橢圓的方程;
(2)過點F2的直線l和該橢圓交于A,B兩點,點C在橢圓上,O為坐標(biāo)原點,且滿足$\overrightarrow{OC}=2\overrightarrow{OA}+3\overrightarrow{OB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個頂點,過橢圓的右焦點F作x軸的垂線,與其交于點C,若AB∥OC(O為坐標(biāo)原點),則直線AB的斜率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=ln(1-$\frac{1}{x}$)的定義域(  )
A.(-∞,0)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,則t=±3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(1)把函數(shù)y=sin2x的圖象沿x軸向左平移$\frac{π}{6}$個單位,縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)y=f(x)圖象,對于函數(shù)y=f(x)有以下四個判斷:
①該函數(shù)的解析式為y=2sin(2x+$\frac{π}{6}$);②該函數(shù)圖象關(guān)于點($\frac{π}{3}$,0)對稱;
③該函數(shù)在[0,$\frac{π}{6}$]上是增函數(shù);④函數(shù)y=f(x)+a在[0,$\frac{π}{2}$]上的最小值為$\sqrt{3}$,則a=2$\sqrt{3}$.
(2)以下命題:⑤若|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|,則$\overrightarrow{a}$∥$\overrightarrow$;⑥$\overrightarrow{a}$=(-1,1)在$\overrightarrow$=(3,4)方向上的投影為$\frac{1}{5}$;⑦若非零向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow$|,則|2$\overrightarrow$|>|$\overrightarrow{a}$+2$\overrightarrow$|.
在(1)和(2)中,正確判斷的序號是②④⑤⑥⑦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知全集U=R,若集合A={x|$\frac{x}{x-1}>0$},則∁UA=[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知θ為第一象限的角,sinθ-2cosθ=-$\frac{2}{5}$,則sinθ+cosθ等于( 。
A.$\frac{9}{5}$B.$\frac{8}{5}$C.$\frac{7}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z=3+$\frac{3+4i}{4-3i}$,則|z|等于(  )
A.3B.$\sqrt{10}$C.$\sqrt{13}$D.4

查看答案和解析>>

同步練習(xí)冊答案