9.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,則t=±3.

分析 由條件利用兩個(gè)向量平行的性質(zhì),求得t的值.

解答 解:∵向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,則9-t2=0,求得t=±3,
故答案為:±3.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量平行的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)已知點(diǎn)A(a,0),B(0,b),直線l交橢圓C于P,Q兩點(diǎn)(點(diǎn)A,B位于直線l的兩側(cè))
(i)若直線l過坐標(biāo)原點(diǎn)O,設(shè)直線AP,AQ,BP,BQ的斜率分別為k1,k2,k3,k4,求證:k1k2+k3k4為定值;
(ii)若直線l的斜率為$\frac{{\sqrt{3}}}{2}$,求四邊形APBQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,若a2-a-$\sqrt{3}$b-$\sqrt{3}$c=0,a+$\sqrt{3}$b-$\sqrt{3}$c+2=0,則△ABC中最大角的余弦值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面內(nèi),點(diǎn)A,B,C分別在直線l1、l2、l3上,且l1∥l2∥l3(l2在l1與l3之間),l1與l2間距離為a,l2與l3之間距離為b,且$\overrightarrow{AB}$2=$\overrightarrow{AB}$•$\overrightarrow{AC}$,則△ABC的面積最小值為( 。
A.$\frac{a+b}{2}$B.abC.2$\sqrt{ab}$D.$\frac{{a}^{2}+^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(2x+φ)在x=$\frac{π}{6}$處取得極大值,則函數(shù)y=f($\frac{π}{4}$+x)的圖象( 。
A.關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱B.關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{π}{6}$對(duì)稱D.關(guān)于直線x=$\frac{π}{3}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=sin(2x+φ),若$f(\frac{π}{12})-f(-\frac{5π}{12})=2$,則函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在四邊形ABCD中,AB=6,BD=3$\sqrt{3}$,BC=4,∠ADB=∠CBD,A=60°,則△BCD的面積為6$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.給出下列五個(gè)結(jié)論:
①回歸直線y=bx+a一定過樣本中心點(diǎn)($\overline{x}$,$\overline{y}$);
②命題“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③將函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向右平移$\frac{π}{6}$后,所得到的圖象關(guān)于y軸對(duì)稱;
④?m∈R,使f(x)=(m-1)•x${\;}^{{m}^{2}-4m+3}$是冪函數(shù),且在(0,+∞)上遞增;
⑤函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{{2}^{x}•|lo{g}_{2}x|-1,x>0}\end{array}\right.$恰好有三個(gè)零點(diǎn);
其中正確的結(jié)論為( 。
A.①②④B.①②⑤C.④⑤D.②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.隨機(jī)拋擲一枚骰子一次,擲出的點(diǎn)數(shù)恰好是2的倍數(shù)的概率為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案