y=log8(2x-1)-
1
3
x的值域是
 
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化簡y=log8(2x-1)-
1
3
x,為y=
1
3
log2(1-2-x).判斷單調(diào)性利用單調(diào)性求解即可.
解答: 解:∵y=log8(2x-1)-
1
3
x=
1
3
log2(2x-1)-
1
3
x
=
1
3
[log2(2x-1)-log22x]=
1
3
log2(1-2-x),
∴y=
1
3
log2(1-2-x).
∵g(x)=1-2-x的單調(diào)遞增,x>0,0<2-x<1,0<1-2-x<1
∴y=
1
3
log2(1-2-x)單調(diào)遞增,
1
3
log2(1-2-x)<0,
∴y=log8(2x-1)-
1
3
x的值域?yàn)椋?∞,0),
故答案為:(-∞,0).
點(diǎn)評:本題考查了有關(guān)對數(shù)函數(shù)的單調(diào)性,運(yùn)用求解值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為e的橢圓
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線x2-y2=1有相同的焦點(diǎn),且直線y=ex分別與橢圓相交于A、B兩點(diǎn),與雙曲線相交于C、D兩點(diǎn),若C、O(坐標(biāo)原點(diǎn))、D依次為線段AB的四等分點(diǎn),則e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱柱ABC-A1B1C1中,AB1⊥BC1,求證:A1C⊥BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
b2
=1(0<b<2)的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C,上頂點(diǎn)為B,過F,B,C作⊙P.
(1)當(dāng)b=
3
時(shí),求圓心P的坐標(biāo);
(2)是否存在實(shí)數(shù)b,使得直線AB與⊙P相切?若存在求b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+y2
=1與雙曲線
x2
b2
-3y2
=1具有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是兩曲線的公共點(diǎn),則∠F1PF2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從參加歷史知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖,觀察圖形,回答下列問題:

(1)補(bǔ)全直方圖中80~90這一小組的圖形;
(2)若不低于80分為優(yōu)秀,求樣本中優(yōu)秀人數(shù);
(3)利用頻率直方圖求60名學(xué)生的平均成績是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為3的正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)P,則點(diǎn)P到正方體各面的距離都不小于1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
x
-x+alnx(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)存在兩個(gè)極值點(diǎn)x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(a+b)n+1的展開式中,奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為
 

查看答案和解析>>

同步練習(xí)冊答案