A. | (-2,1) | B. | (0,1) | C. | $({1,\sqrt{2}})$ | D. | (-∞,-2)∪(1,+∞) |
分析 令g(x)=f(x)-1,則可得g(x)為奇函數(shù),且g(x)在(-1,1)上為增函數(shù),進(jìn)而可得答案.
解答 解:令g(x)=f(x)-1=ex-e-x+4sin3x,
則g(-x)=-g(x),即g(x)為奇函數(shù),
若f(1-a)+f(1-a2)>2成立,
即g(1-a)+g(1-a2)>0成立,
即g(1-a)>-g(1-a2)=g(a2-1),
∵g′(x)=ex+e-x+12sin2xcosx≥0在x∈(-1,1)時(shí)恒成立,
故g(x)在(-1,1)上為增函數(shù),
故-1<a2-1<1-a<1,
解得:a∈(0,1),
故選:B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f(x)是奇函數(shù),則f(0)=0 | |
B. | 若α是銳角,則2α是一象限或二象限角 | |
C. | 若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$ | |
D. | 集合A={P|P⊆{1,2}}有4個(gè)元素 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 1 | C. | -3或1 | D. | 3或1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com