【題目】銳角三角形的內(nèi)角的對邊分別為,

(Ⅰ)求的大;

(Ⅱ)求的取值范圍.

【答案】解:(1)由,根據(jù)正弦定理得………2

所以,由為銳角三角形得………………4

2

……………………………8

為銳角三角形知, ,

,所以……………………………11

由此有

所以, 的取值范圍為……………………………12

【解析】試題分析:(1)由,根據(jù)正弦定理得,所以,由為銳角三角形得;(2)由(1)知,利用誘導公式與輔助角公式變形化簡得,由為銳角三角形知,因此的取值范圍為

試題解析:(1)由,根據(jù)正弦定理得,所以,

為銳角三角形得

2

為銳角三角形知, ,

所以.由此有

所以, 的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù) 的奇偶性.
(2)求 的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是實數(shù)。設, 為該函數(shù)圖象上的兩點,且.

1)若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;

2)若函數(shù)的圖象在點處的切線重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量(單位:萬件)之間的關系如下表:

(1)在圖中畫出表中數(shù)據(jù)的散點圖;

(2)根據(jù)散點圖選擇合適的回歸模型擬合的關系(不必說明理由);

(3)建立關于的回歸方程,預測第5年的銷售量.

附注:參考公式:回歸直線的斜率和截距的最小二乘法估計公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為,過的直線交拋物線于點,當直線的傾斜角是時, 的中垂線交軸于點.

(1)求的值;

(2)以為直徑的圓交軸于點,記劣弧的長度為,當直線點旋轉(zhuǎn)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , , 依次成公比為的等比數(shù)列,且

D. , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程分別是為參數(shù))和為參數(shù)),以為極點, 軸的正半軸為極軸建立極坐標系.

(Ⅰ)求圓的極坐標方程;

(Ⅱ)射線 與圓交于點、,與圓交于點、,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中=2.71828…為自然數(shù)的底數(shù).

(1)當時,討論函數(shù)的單調(diào)性;

(2)當時,求證:對任意的, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為

(1)若= ,求證:曲線上的任意一點處的切線與直線和直線圍成的三角形面積為定值;

(2)若,是否存在實數(shù),使得對于定義域內(nèi)的任意都成立;

(3)在(2)的條件下,若方程有三個解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案