3.假設(shè)某10張獎(jiǎng)券中有一等獎(jiǎng)1張獎(jiǎng)品價(jià)值100元;有二等獎(jiǎng)3張,每份獎(jiǎng)品價(jià)值50元;其余6張沒(méi)有獎(jiǎng).現(xiàn)從這10張獎(jiǎng)券中任意抽取2張,獲得獎(jiǎng)品的總價(jià)值ξ不少于其數(shù)學(xué)期望Eξ的概率為$\frac{2}{3}$.

分析 根據(jù)題意可得:ξ的所有可能值為:0,50,100,150,(元),再根據(jù)古典概型的概率公式分別求出其概率,進(jìn)而列出ξ的分布列與其期望,即可求出獲得獎(jiǎng)品的總價(jià)值ξ不少于其數(shù)學(xué)期望Eξ的概率.

解答 解:根據(jù)題意可得:ξ的所有可能值為:0,50,100,150,(元).
所以P(ξ=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,P(ξ=50)=$\frac{{C}_{3}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{2}{5}$,P(ξ=100)=$\frac{{C}_{6}^{1}{C}_{1}^{1}+{C}_{3}^{2}}{{C}_{10}^{2}}$=$\frac{1}{5}$,P(ξ=150)=$\frac{{C}_{3}^{1}{C}_{1}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
所以ξ的分布列為:

ξ050100150
P$\frac{1}{3}$ $\frac{2}{5}$ $\frac{1}{5}$  $\frac{1}{15}$
所以ξ的數(shù)學(xué)期望為:Eξ=0×$\frac{1}{3}$+50×$\frac{2}{5}$+100×$\frac{1}{5}$+150×$\frac{1}{15}$=50,
獲得獎(jiǎng)品的總價(jià)值ξ不少于其數(shù)學(xué)期望Eξ的為1-$\frac{1}{3}$=$\frac{2}{3}$,
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查古典概型、排列組合、離散型隨機(jī)變量的分布列和期望,及利用概率知識(shí)解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=sin$\frac{x}{2}$sin($\frac{π}{2}-\frac{x}{2}$)的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,若a=$\sqrt{2}$,c=2,A=30°,則C等于( 。
A.30°B.30°或150°C.45°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知各項(xiàng)互異的等比數(shù)列{an}中,a1=2,其前n項(xiàng)和為Sn,且a4+S4,a5+S5,a6+S6成等差數(shù)列,則an=$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.對(duì)于中心在原點(diǎn),離心率也相同的n個(gè)橢圓,其方程分別為:C1:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{λ}^{2}{a}^{2}}=1$(0<λ<1,a>0),C2:$\frac{{x}^{2}}{{λ}^{2}{a}^{2}}+\frac{{y}^{2}}{{λ}^{4}{a}^{2}}$=1,…,Cn:$\frac{{x}^{2}}{{λ}^{2(n-1)}{a}^{2}}$$+\frac{{y}^{2}}{{λ}^{2n}{a}^{2}}$=1,即第i個(gè)橢圓的短軸的等于第i+1個(gè)橢圓的長(zhǎng)軸,則稱這n個(gè)橢圓為相似橢圓系,并稱λ為此相似橢圓系的相似比,若橢圓C1的方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$,則第3個(gè)橢圓C3的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=$\frac{\sqrt{2x-{x}^{2}}}{lgx}$的定義域是(0,1)∪(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知a,b為正整數(shù)且a≤b,實(shí)數(shù)x、y滿足x+y=4($\sqrt{x+a}$$+\sqrt{y+b}$).若x+y的最大值為40,則滿足條件的數(shù)對(duì)(a,b)的數(shù)目為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]cosx-$\sqrt{3}$sin2x.
(1)求f(x)圖象的對(duì)稱軸方程;
(2)若存在實(shí)數(shù)t∈[0,$\frac{5π}{12}$],使得sf(t)-2=0成立,求實(shí)數(shù)s的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示的流程圖,輸入正實(shí)數(shù)x后,若輸出i=4,那么輸入的x的取值范圍是$\frac{9}{4}≤x<3$.

查看答案和解析>>

同步練習(xí)冊(cè)答案