20.在三棱錐P-ABC中,PA⊥底面ABC,D為BC的中點(diǎn),PB=PC=$\sqrt{26}$,cos∠BPC=$\frac{5}{13}$,在△PAD中,過(guò)A作AM⊥PD于M.
(Ⅰ)求證:AM⊥PC;
(Ⅱ)若AD=3,求三棱錐P-ABC的體積.

分析 (Ⅰ)先證明:BC⊥平面PAD,可得BC⊥AM,再利用AM⊥PD,PD∩BC=D,可得AM⊥平面PBC,即可證明AM⊥PC;
(Ⅱ)由余弦定理可得BC,求出PD,可得三角形PBC的面積,再求出AM,利用等體積即可求三棱錐P-ABC的體積.

解答 (Ⅰ)證明:∵D為BC的中點(diǎn),PB=PC,
∴BC⊥PD,
∵PA⊥底面ABC,BC?底面ABC,∴BC⊥PA,
∵PA∩PD=P,∴BC⊥平面PAD,
∵AM?平面PAD,∴BC⊥AM,
∵AM⊥PD,PD∩BC=D,∴AM⊥平面PBC,
∵PC?平面PBC,∴AM⊥PC;
(Ⅱ)解:∵PB=PC=$\sqrt{26}$,cos∠BPC=$\frac{5}{13}$,
∴由余弦定理可得BC=4$\sqrt{2}$,
∴PD=$\sqrt{26-8}$=3$\sqrt{2}$,
∴S△PBC=$\frac{1}{2}×4\sqrt{2}×3\sqrt{2}$=12,
∵AD=3,∴PA=3,
∴AM=$\frac{3\sqrt{2}}{2}$,
∴VP-ABC=VA-PBC=$\frac{1}{3}×12×\frac{3\sqrt{2}}{2}$=6$\sqrt{2}$.

點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查三棱錐體積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用線面垂直的判定與性質(zhì),合理運(yùn)用等體積轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.方程$\sqrt{3}$sinx=cosx的解集為$\{x|x=kπ+\frac{π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知f(x)=Asin(wx+θ),(w>0),若兩個(gè)不等的實(shí)數(shù)x1,x2∈$\left\{{x\left|{f(x)=\frac{A}{2}}\right.}\right\}$,且|x1-x2|min=π,則f(x)的最小正周期是( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.復(fù)數(shù)z滿足z(1-i)=2(i是虛數(shù)單位),則z=(  )
A.1+iB.-1+iC.-1-iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)全集為U=R,且S={x|x≥1},T={x|x≤3},∁U(S∩T)=( 。
A.(-∞,3]B.[1,+∞)C.(-∞,1)∪[3,+∞)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb(a>0,b>0).
(I)設(shè)h(x)=f(x)+g(x),求h(x)的單調(diào)區(qū)間;
(II)若存在x0,使x0∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$]且f(x0)≤g(x0)成立,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.小朋友甲、乙、丙、丁一塊玩撲克牌數(shù)字計(jì)算,把全部紅桃1至紅桃9等9張撲克牌洗牌后疊起來(lái),每人從中抽取2張,然后報(bào)出兩數(shù)的關(guān)系,甲說(shuō)自己手里的兩數(shù)相加為10;乙說(shuō)自己手里的兩數(shù)相減為1;丙說(shuō)自己手里的兩數(shù)乘積為24;丁說(shuō)自己手里的兩數(shù)之商為3.由此猜出剩下沒(méi)有人拿的數(shù)字是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{2}{x+1}$,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$與i的夾角,則$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{2015}}{sin{θ}_{2015}}$的值為$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若$\vec a$,$\vec b$是兩個(gè)非零的平面向量,則“$|{\vec a}|=|{\vec b}|$”是“$({\vec a+\vec b})•({\vec a-\vec b})=0$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案