【題目】如圖,在正六棱錐中,已知底邊為2,側棱與底面所成角為.

1)求該六棱錐的體積

2)求證:

【答案】112;(2)證明見解析.

【解析】

1)連結AD,過PPO⊥底面ABCD,交AD于點O,則PA2AO4,由此能求出該六棱錐的體積.

2)連結CE,交AD于點O,連結PG,推導出ADCE,PGCE,從而CE⊥平面PAD,由此能證明PACE

∵在正六棱錐PABCDEF中,底邊長為2,側棱與底面所成角為60°

連結AD,過PPO⊥底面ABCD,交AD于點O,

AODO2,∠PAO60°,∴PA2AO4

PO2,

SABCDEF)=6

∴該六棱錐的體積V12

2)連結CE,交AD于點O,連結PG,

DECD,AEAD,∴ADCE,OCE中點,

PAPC,∴PGCE

PGADG,∴CE⊥平面PAD

PA平面PAD,∴PACE

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρρ2sinθ)=1

1)求C的直角坐標方程;

2)設直線ly軸相交于P,與曲線C相交于AB兩點,且|PA|+|PB|2,求點O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將邊長為1的正方形ABCD沿x軸正向滾動,先以A為中心順時針旋轉(zhuǎn),當B落在x軸時,又以B為中心順時針旋轉(zhuǎn),如此下去,設頂點C滾動時的曲線方程為,則下列說法不正確的是

A.恒成立B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx,gx)=f+1kR,k≠0),則下列關于函數(shù)yf[gx]+1的零點個數(shù)判斷正確的是(

A.k0時,有2個零點;當k0時,有4個零點

B.k0時,有4個零點;當k0時,有2個零點

C.無論k為何值,均有2個零點

D.無論k為何值,均有4個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線Ey24x上的動點,F是拋物線E的焦點.

1)求|PF|的最小值;

2)點B,Cy軸上,直線PB,PC與圓(x12+y21相切.當|PF|[4,6]時,求|BC|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變,使用移動支付購買商品已成為一部分人的消費習慣.某企業(yè)為了解該企業(yè)員工兩種移動支付方式的使用情況,從全體員工中隨機抽取了100人,統(tǒng)計了他們在某個月的消費支出情況.發(fā)現(xiàn)樣本中兩種支付方式都沒有使用過的有5人;使用了兩種方式支付的員工,支付金額和相應人數(shù)分布如下:

支付金額(元)

支付方式

大于2000

使用

18

29

23

使用

10

24

21

依據(jù)以上數(shù)據(jù)估算:若從該公司隨機抽取1名員工,則該員工在該月兩種支付方式都使用過的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表列出了1058歲兒童的體重x(單位kg)(這是容易測得的)和體積y(單位dm3)(這是難以測得的),繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合yx的關系:

體重x

17.00 10.50 13.80 15.70 11.90 10.20 15.00 17.80 16.00 12.10

體積y

16. 70 10.40 13.50 15.70 11.60 10.00 14.50 17.50 15.40 11.70

(1)y關于x的線性回歸方程(系數(shù)精確到0.01);

(2)5歲兒童的體重為13.00kg,估測此兒童的體積.

附注:參考數(shù)據(jù):,,

,,137×14=1918.00

參考公式:回歸方程中斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2011年國際數(shù)學協(xié)會正式宣布,將每年的3月14日設為國際數(shù)學節(jié),來源于中國古代數(shù)學家祖沖之的圓周率。公元263年,中國數(shù)學家劉徽用“割圓術”計算圓周率,計算到圓內(nèi)接3072邊形的面積,得到的圓周率是.公元480年左右,南北朝時期的數(shù)學家祖沖之進一步得出精確到小數(shù)點后7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數(shù)值,密率和約率。大約在公元530年,印度數(shù)學大師阿耶波多算出圓周率約為).在這4個圓周率的近似值中,最接近真實值的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,射線的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為.一只小蟲從點沿射線向上以單位/min的速度爬行

1)以小蟲爬行時間為參數(shù),寫出射線的參數(shù)方程;

2)求小蟲在曲線內(nèi)部逗留的時間.

查看答案和解析>>

同步練習冊答案