已知數(shù)列的前項和為正整數(shù))。
(1) 令,求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2) 令,,求使得成立的最小正整數(shù),并證明你的結(jié)論.

(1)
(2)最小正整數(shù)  

解析試題分析:解:(1)在中,
令n=1,可得,即     2分
時,
.     2分
.
數(shù)列是首項和公差均為1的等差數(shù)列.  5分
于是.     7分
(2)由(1)得,所以

 9分
由①-②得                               
          11分
        13分
下面證明數(shù)列是遞增數(shù)列.
, ∴,

∴數(shù)列單調(diào)遞增
所以, 使得成立的最小正整數(shù)   16分
考點:等比數(shù)列
點評:主要是考查了等比數(shù)列的求和的運用,屬于基礎(chǔ)題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知各項為正數(shù)的等差數(shù)列滿足,且).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,點在直線上,且.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求;
(Ⅱ)設(shè),數(shù)列的前項和為,成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知遞增等差數(shù)列前3項的和為,前3項的積為8,
(1)求等差數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為等差數(shù)列,是等差數(shù)列的前項和,已知,.
(1)求數(shù)列的通項公式;(2)為數(shù)列的前項和,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)數(shù)列的前n項和為,點均在函數(shù)y=-x+12的圖像上.
(Ⅰ)寫出關(guān)于n的函數(shù)表達式;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)求數(shù)列的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

各項均為正數(shù)的等差數(shù)列首項為1,且成等比數(shù)列,
(1)求、通項公式;
(2)求數(shù)列前n項和;
(3)若對任意正整數(shù)n都有成立,求范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,當時,總有成立,且
(Ⅰ)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{}滿足,且
(1)求證:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的通項公式;
(3)設(shè)數(shù)列{}的前項之和,求證:

查看答案和解析>>

同步練習冊答案