(本小題滿分12分)
如圖,在三棱錐P-ABC中,,,點(diǎn) 分別是AC、PC的中點(diǎn),底面AB
(1)求證:平面;
(2)當(dāng)時(shí),求直線與平面所成的角的大小;
(3)當(dāng)取何值時(shí),在平面內(nèi)的射影恰好為的重心?
(1)證明見(jiàn)解析。
(2)
(3)
【解析】19.解:方法一:
(Ⅰ)∵O、D分別為AC、PC中點(diǎn),
, ………………………………(2分)
(Ⅱ)
,
………..(5分)
又,
PA與平面PBC所成的角的大小等于,
………………(8分)
(Ⅲ)由(Ⅱ)知,,∴F是O在平面PBC內(nèi)的射影
∵D是PC的中點(diǎn),
若點(diǎn)F是的重心,則B,F(xiàn),D三點(diǎn)共線,
∴直線OB在平面PBC內(nèi)的射影為直線BD,
,即…………………..(10分)
反之,當(dāng)時(shí),三棱錐為正三棱錐,
∴O在平面PBC內(nèi)的射影為的重心…………………………..(12分)
方法二:
,,
以O(shè)為原點(diǎn),射線OP為非負(fù)z軸,建立空間直角坐標(biāo)系(如圖)
設(shè)則,
設(shè),則
(Ⅰ)D為PC的中點(diǎn),
,
又 ,
(Ⅱ),即,
可求得平面PBC的法向量,
,
設(shè)PA與平面PBC所成的角為,則
,
(Ⅲ)的重心,
,
,
又,
,即,
反之,當(dāng)時(shí),三棱錐為正三棱錐,
∴O在平面PBC內(nèi)的射影為的重心
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com