設(shè)函數(shù)f(x)=log2(x2-4x+a)(a>4),若所有點(diǎn)(s,f(t))(s,t∈[1,3])構(gòu)成一個(gè)正方形區(qū)域,則函數(shù)f(x)的單調(diào)增區(qū)間為(  )
A、[1,2]
B、[2,3]
C、(-∞,2]
D、[2,+∞)
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,正方形的邊長(zhǎng)為2,從而得到log2(a-3)-log2(a-4)=2,從而求出a,從而確定函數(shù)的單調(diào)性.
解答: 解:∵s∈[1,3],
∴正方形的邊長(zhǎng)為2;
t∈[1,3]時(shí),
x2-4x+a∈[a-4,a-3];
則log2(a-3)-log2(a-4)=2;
解得,a=
13
3
;
故x2-4x+
13
3
>0得,
又△=16-4×
13
3
<0;
故x2-4x+
13
3
>0恒成立,
故函數(shù)f(x)的單調(diào)增區(qū)間為[2,+∞),
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
cosxsinx+cos2x+cos2x.
(I)求函數(shù)f(x)的最小正周期;
(II)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且銳角B滿足f(B)=
1
2
,A=
π
4
,b=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,5),直線l:2x-3y-2=0,點(diǎn)M與點(diǎn)A關(guān)于l對(duì)稱,
(1)求點(diǎn)M的坐標(biāo);
(2)若點(diǎn)B,C分別在直線l與y軸上運(yùn)動(dòng),求△ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
3
=1,那么它的焦點(diǎn)到漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-
1
x
的圖象按向量
a
=(1,0)平移之后得到的函數(shù)圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a6=16,S9=117,則a10的值為( 。
A、26B、27C、28D、29

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=sin2x的圖象向右平移
π
6
個(gè)單位,得到函數(shù)y=g(x)的圖象,則它的一個(gè)對(duì)稱中心是( 。
A、(-
π
2
,0)
B、(-
π
6
,0)
C、(
π
6
,0)
D、(
π
3
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(2x-1)+
1-x
的定義域?yàn)椋ā 。?/div>
A、(
1
2
,1]
B、[
1
2
,1]
C、(-∞,1)
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log
1
3
2,b=log23,c=(
1
2
0.3,則a,b,c大小關(guān)系為( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、c<a<b

查看答案和解析>>

同步練習(xí)冊(cè)答案