3.設(shè)對任意的實數(shù)x∈[-1,1],不等式x2+ax-3a<0總成立,則實數(shù)a的取值范圍是($\frac{1}{2}$,+∞).

分析 構(gòu)造函數(shù)令f(x)=x2+ax-3a,依題意可得$\left\{\begin{array}{l}{f(-1)<0}\\{f(1)<0}\end{array}\right.$,解之即可求得實數(shù)a的取值范圍.

解答 解:令f(x)=x2+ax-3a,
∵對任意的實數(shù)x∈[-1,1],不等式x2+ax-3a<0總成立,
∴$\left\{\begin{array}{l}{f(-1)<0}\\{f(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{{(-1)}^{2}+a×(-1)-3a<0}\\{{1}^{2}+a×1-3a<0}\end{array}\right.$,
解得:a$>\frac{1}{2}$,
故答案為:($\frac{1}{2}$,+∞).

點評 本題考查函數(shù)恒成立問題,構(gòu)造函數(shù)f(x)=x2+ax-3a,依題意可得$\left\{\begin{array}{l}{f(-1)<0}\\{f(1)<0}\end{array}\right.$是解決問題的關(guān)鍵,考查等價轉(zhuǎn)化思想與函數(shù)與方程思想,也可分離參數(shù)a,利用對勾函數(shù)的性質(zhì)解決,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)當函數(shù)f(x)的圖象過點(-1,0),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)若函數(shù)f(x)為偶函數(shù)且a>0,設(shè)F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$ 當m>-n>0,試判斷F(m)+F(n)能否大于0?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.甲、乙兩位數(shù)學老師組隊參加某電視臺闖關(guān)節(jié)目,共3關(guān),甲作為嘉賓參與答題,若甲回答錯誤,乙作為親友團在整個通關(guān)過程中至多只能為甲提供一次幫助機會,若乙回答正確,則甲繼續(xù)闖關(guān),若某一關(guān)通不過,則收獲前面所有累積獎金.約定每關(guān)通過得到獎金2000元,設(shè)甲每關(guān)通過的概率為$\frac{3}{4}$,乙每關(guān)通過的概率為$\frac{1}{2}$,且各關(guān)是否通過及甲、乙回答正確與否均相互獨立.
(1)求甲、乙獲得2000元獎金的概率;
(2)設(shè)X表示甲、乙兩人獲得的獎金數(shù),求隨機變量X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖有4種不同的顏色可供選擇,給圖中的矩形A,B,C,D涂色,要求相鄰的矩形涂色不同,則不同的涂法有72種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.不等式x${\;}^{lo{g}_{\frac{1}{2}}x}$<$\frac{1}{x}$的解集為(  )
A.{x|1<x<2}B.{x|x<1或x>2}C.D.{x|0<x<1或x>2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知lga、lgb是一元二次方程x2-3x+1=0的兩個根,且1ga>lgb,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-ax-1.
(1)若函數(shù)f(x)在x=ln2處取極值,求a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.i為虛數(shù)單位,則(1+i552=( 。
A.4B.0C.2iD.-2i

查看答案和解析>>

同步練習冊答案