3.已知直線y=x-2與拋物線y2=2x相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求證:OA⊥OB.
(2)求|AB|.

分析 (1)將直線方程代入拋物線方程,利用韋達(dá)定理,求得y1y2及x1x2,由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=0,即可證明OA⊥OB;
(2)利用弦長公式即可求得|AB|.

解答 解:(1)證明:設(shè)A(x1,y1 ),B(x2,y2),
則$\left\{\begin{array}{l}{y=x-2}\\{{y}^{2}=2x}\end{array}\right.$,整理得:y2-2y-4=0,
∴y1+y2=2,y1y2=-4
∴x1x2=(y1+2)(y2+2)=y1y2+2(y1+y2)+4=4,
由$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=4+(-4)=0,
∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴OA⊥OB.
(2)由(1)可知:x1+x2=(y1+2)+(y2+2)=y1+y2+4=6,
|AB|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{36-4×4}$=2$\sqrt{10}$,
∴|AB|=2$\sqrt{10}$.

點(diǎn)評 本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理,弦長公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{1}{2}$,F(xiàn)1,F(xiàn)2分別為左右焦點(diǎn),B1為短軸的一個端點(diǎn),△B1F1F2的面積為$\sqrt{3}$
(Ⅰ)求橢圓E的方程
(Ⅱ)若A,B,C,D是橢圓上異于頂點(diǎn)且不重合的四個點(diǎn),AC于BD相交于點(diǎn)F1,且$\overrightarrow{AC}•\overrightarrow{BD}$=0,求$\frac{|AC|}{|BD|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$則(x-1)2+y2的最小值是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}的前n項和為Sn,且a1=1,2Sn=an•an+1(n∈N*).若bn=(-1)n$\frac{2n+1}{{a}_{n}•{a}_{n+1}}$,則數(shù)列{bn}的前n項和Tn=-1+$\frac{(-1)^{n}}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,則a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三個不同的實(shí)根,則實(shí)數(shù)b的取值范圍是(-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)F1、F2是雙曲線x2-4y2=4的兩個焦點(diǎn),P在雙曲線上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=f(x)定義在區(qū)間(-3,7)上,其導(dǎo)函數(shù)如圖所示,則函數(shù)y=f(x)在區(qū)間(-3,7)上極小值的個數(shù)是( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l:x+ay-1=0(a∈R)是圓C:x2+y2-4x-2y+1=0的對稱軸,過點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=(  )
A.2B.4$\sqrt{2}$C.2$\sqrt{10}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)在△ABC中,若2lgtanB=lgtanA+lgtanC,則B的取值范圍是[$\frac{π}{3}$,$\frac{π}{2}$).
(2)求函數(shù)y=7-4sinxcosx+4cos2x-4cos4x的最大值10.

查看答案和解析>>

同步練習(xí)冊答案