設(shè)命題p:函數(shù)f(x)=lg(ax2-x+
1
4
a)的定義域?yàn)镽;命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)都成立,如果命題p,q中至少有一個(gè)真命題,求實(shí)數(shù)a的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:命題p:函數(shù)f(x)=lg(ax2-x+
1
4
a)的定義域?yàn)镽,對(duì)a分類討論:當(dāng)a≤0時(shí),不滿足條件,應(yīng)舍去;當(dāng)a>0時(shí),由于ax2-x+
1
4
a>0恒成立,可得△<0.對(duì)于命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)都成立,可得a>(3x-9xmax.利用指數(shù)與二次函數(shù)的單調(diào)性即可得出.由于命題p,q中至少有一個(gè)真命題,求出上面的交集即可.
解答: 解:命題p:函數(shù)f(x)=lg(ax2-x+
1
4
a)的定義域?yàn)镽,
當(dāng)a≤0時(shí),不滿足條件,應(yīng)舍去;當(dāng)a>0時(shí),∵ax2-x+
1
4
a>0恒成立,∴△<0,∴1-a2<0,解得a>1或a<-1.綜上可得:a的取值范圍是a>1或a<-1.
命題q:不等式3x-9x<a對(duì)一切正實(shí)數(shù)都成立,∴a>(3x-9xmax
令f(x)=3x-9x=-(3x-
1
2
)2+
1
4
1
4

a>
1
4

∵命題p,q中至少有一個(gè)真命題,
∴a的取值范圍是a>1或a<-1或a>
1
4

因此實(shí)數(shù)a的取值范圍是a>
1
4
或a<-1.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性、恒成立問題的等價(jià)轉(zhuǎn)化方法、復(fù)合命題的真假判定方法,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

重慶某中學(xué)高二年級(jí)共有學(xué)生800名,現(xiàn)在從該校高二年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們數(shù)學(xué)學(xué)業(yè)水平考試成績(jī)分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.據(jù)此統(tǒng)計(jì),該校高二年級(jí)學(xué)生數(shù)學(xué)學(xué)業(yè)水平考試成績(jī)不低于及格分?jǐn)?shù)(60分)的學(xué)生人數(shù)為( 。
A、80B、100
C、600D、640

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+m+3)(x+m+5),g(x)=3x-3,且同時(shí)滿足條件:①?x∈R,f(x)<0或g(x)<0; ②?x∈(-∞,-2),f(x)•g(x)<0,則m的取值范圍( 。
A、(-∞,-2)
B、(-4,-3)
C、(-3,0)
D、(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(1)若對(duì)任意x∈[1,+∞),f(x)+g(x)≥-x3+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:對(duì)n∈N*,不等式
1
In(n+1)
+
1
In(n+2)
+…+
1
In(n+2013)
2013
n(n+2013)
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c,且f(1)=0
(1)若函數(shù)f(x)是偶函數(shù),求f(x)的解析式;
(2)在(1)的條件下,求函數(shù)f(x)在[-1,3]上的最大、最小值;
(3)要使函數(shù)f(x)在[-1,3]上是單調(diào)函數(shù),求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,F(xiàn)1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的左、右兩個(gè)焦點(diǎn),A,B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)(1,
3
2
)到焦點(diǎn)F1,F(xiàn)2兩點(diǎn)的距離之和為4.
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過橢圓C的焦點(diǎn)F2作AB的平行線交橢圓于P,Q兩點(diǎn),求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A、B是全集U={1,2,3,4,5,6,7,8,9}的子集,且A∩B={2},(∁UA)∩(∁UB)={1,9},(∁UA)∩B={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國(guó)家標(biāo)準(zhǔn)GB3095-2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級(jí);在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級(jí);在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測(cè)值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值頻數(shù)如表所示:
PM2.5日均值
(微克/立方米)
[25,35](35,45](45,55](55,65](65,75](75,85]
頻數(shù)311113
(1)從這10天的PM2.5日均值監(jiān)測(cè)數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級(jí)的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級(jí)或二級(jí).(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y|y=x-1,x∈R},B={y|y=x2-1,x∈R},C={x|y=x+1,y≥3},求(A∪C)∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案