11.如圖,已知A、B分別是函數(shù)f(x)=$\sqrt{3}$cos(ωx-$\frac{π}{2}$)(ω>0)在y軸右側(cè)圖象上的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn),且∠AOB=$\frac{π}{2}$,則為了得到函數(shù)y=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$)的圖象,只需把函數(shù)y=f(x)的圖象( 。
A.向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度B.向左平行移動(dòng)$\frac{1}{3}$個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)$\frac{2}{3}$個(gè)單位長(zhǎng)度D.向左平行移動(dòng)$\frac{2π}{3}$個(gè)單位長(zhǎng)度

分析 先求得A、B的坐標(biāo),再利用兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式求得T的值,可得ω的值,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,的出結(jié)論.

解答 解:函數(shù)f(x)=$\sqrt{3}$cos(ωx-$\frac{π}{2}$)=$\sqrt{3}$sinωx,設(shè)函數(shù)f(x)的周期為T,則點(diǎn)A($\frac{T}{4}$,$\sqrt{3}$)、B($\frac{3T}{4}$,-$\sqrt{3}$),
根據(jù)∠AOB=$\frac{π}{2}$,可得$\overrightarrow{OA}•\overrightarrow{OB}$=$\frac{{3T}^{2}}{16}$-3=0,∴T=4=$\frac{2π}{ω}$,∴ω=$\frac{π}{2}$,f(x)=$\sqrt{3}$sin$\frac{π}{2}$x.
由于函數(shù)y=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$)=$\sqrt{3}$sin$\frac{π}{2}$(x+$\frac{2}{3}$),
故只需把函數(shù)y=f(x)的圖象向左平行移動(dòng)$\frac{2}{3}$個(gè)單位長(zhǎng)度,
故選:C.

點(diǎn)評(píng) 本題中主要考查誘導(dǎo)公式,正弦函數(shù)的周期性,兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分圖象如圖所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,則f($\frac{π}{3}$)等于( 。
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[0,2]上隨機(jī)取兩個(gè)數(shù)x,y,則xy∈[0,2]的概率是( 。
A.$\frac{1-ln2}{2}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1+2ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意x≥0都有f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$是互相垂直的兩個(gè)單位向量,且|$\overrightarrow{a}$-3$\overrightarrow$|=m|$\overrightarrow{a}$+$\overrightarrow$|,則實(shí)數(shù)m的值為( 。
A.$\sqrt{10}$B.±$\sqrt{10}$C.$\sqrt{5}$D.±$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四邊形ABCD是正方形,四邊形ABEG是平行四邊形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,設(shè)線段CD、AE的中點(diǎn)分別為P、M.
(Ⅰ)求證:EF⊥平面BCE;
(Ⅱ)求證:MP∥平面BCE;
(Ⅲ)若∠EAF=30°,求三棱錐M-BDP和三棱錐F-BCE的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知射線OP:y=$\frac{4}{3}$x(x≥0)和矩形ABCD,AB=16,AD=9,點(diǎn)A、B分別在射線OP和x軸非負(fù)半軸上,則線段OD長(zhǎng)度的最大值為( 。
A.$\sqrt{337}$B.27C.$\sqrt{689}$D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.己知三個(gè)不同的平面α,β,γ滿足α⊥γ,β⊥γ,則α與β的關(guān)系是相交或平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長(zhǎng)12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標(biāo)系xOy(如圖所示).景觀湖的邊界線符合函數(shù)y=x+$\frac{1}{x}$(x>0)模型,園區(qū)服務(wù)中心P在x軸正半軸上,PO=$\frac{4}{3}$百米.
(1)若在點(diǎn)O和景觀湖邊界曲線上一點(diǎn)M之間修建一條休閑長(zhǎng)廊OM,求OM的最短長(zhǎng)度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案