20.己知三個不同的平面α,β,γ滿足α⊥γ,β⊥γ,則α與β的關(guān)系是相交或平行.

分析 以正方體為載體,能判斷α與β的關(guān)系.

解答 解:如圖,在正方體ABCD-A1B1C1D1中,
平面ADD1A1⊥平面ABCD,平面DCC1D1⊥平面ABCD,
平面ADD1A1∩平面DCC1D1=DD1;
平面ADD1A1⊥平面ABCD,平面BCC1B1⊥平面ABCD,
平面ADD1A1∥平面BCC1B1
∴三個不同的平面α,β,γ滿足α⊥γ,β⊥γ,
則α與β相交或平行.
故答案為:相交或平行.

點(diǎn)評 本題考查兩平面的位置關(guān)系的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中,正確的是( 。
①?x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個角是直角的四邊形不一定是平面圖形.
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,已知A、B分別是函數(shù)f(x)=$\sqrt{3}$cos(ωx-$\frac{π}{2}$)(ω>0)在y軸右側(cè)圖象上的第一個最高點(diǎn)和第一個最低點(diǎn),且∠AOB=$\frac{π}{2}$,則為了得到函數(shù)y=$\sqrt{3}$sin($\frac{π}{2}$x+$\frac{π}{3}$)的圖象,只需把函數(shù)y=f(x)的圖象( 。
A.向左平行移動$\frac{π}{3}$個單位長度B.向左平行移動$\frac{1}{3}$個單位長度
C.向左平行移動$\frac{2}{3}$個單位長度D.向左平行移動$\frac{2π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)0<a<1,b>c>0,則下列結(jié)論不正確的是( 。
A.ab<acB.ba>caC.logab<logacD.$\frac{a}>\frac{a}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足z(l+i)=3-i,則|$\overline{z}$|等于( 。
A.$\sqrt{5}$B.5C.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$-$\overrightarrow$=($\sqrt{3}$,$\sqrt{2}$),則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{15}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|ax-1|
(1)若f(x)≤2的解集為[-3,1],求實數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)-f(x-1)≤3-2m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列說法正確的是②.(填上所有正確命題的序號)
①空間三點(diǎn)確定一個平面
②兩條相交直線確定一個平面
③一點(diǎn)和一條直線確定一個平面
④一條直線與兩條平行線中的一條相交,則必與另一條相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若對?x∈[1,2],有x2-a≤0恒成立,則a的取值范圍是( 。
A.a≤4B.a≥4C.a≤5D.a≥5

查看答案和解析>>

同步練習(xí)冊答案