橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則 .
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖,已知雙曲線C1:,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“
(1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;
(3)求證:圓x2+y2=內(nèi)的點都不是“C1﹣C2型點”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知雙曲線與拋物線有一個公共的焦點,且雙曲線上的點到坐標原點的最短距離為1,則該雙曲線的標準方程是___________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)點是雙曲線與圓在第一象限的交點,其中分別是雙曲線的左、右焦點,若,則雙曲線的離心率為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com