設(shè)點是雙曲線與圓在第一象限的交點,其中分別是雙曲線的左、右焦點,若,則雙曲線的離心率為______________.

解析試題分析:先由雙曲線定義和已知求出兩個焦半徑的長,再由已知圓的半徑為半焦距,知焦點三角形為直角三角形,從而由勾股定理得關(guān)于a、c的等式,求得離心率解:依據(jù)雙曲線的定義:|PF1|-|PF2|=2a,又∵,即|PF1|=3|PF2|,∴|PF1|=3a,|PF2|=a,∵圓x2+y2=a2+b2的半徑r=c,∴F1F2是圓的直徑,∴∠F1PF2=90°在直角三角形F1PF2中由(3a)2+a2=(2c)2,得e=,故填寫
考點:雙曲線的定義
點評:本題考查了雙曲線的定義,雙曲線的幾何性質(zhì),離心率的求法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

橢圓的焦點為,點在橢圓上,且線段的中點恰好在軸上,,則            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線與雙曲線C:交于兩點,是線段的中 點,若是原點)的斜率的乘積等于,則此雙曲線的離心率為        ___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知拋物線的準線經(jīng)過橢圓的左焦點,且經(jīng)過拋物線與橢圓兩個交點的弦過拋物線的焦點,則橢圓的離心率為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

拋物線的焦點為,過焦點傾斜角為的直線交拋物線于,兩點,點,在拋物線準線上的射影分別是,若四邊形的面積為,則拋物線的方程為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

橢圓(為參數(shù))的離心率是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

雙曲線的一個焦點到一條漸近線的距離為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知橢圓上一點到橢圓一個焦點的距離是3,則到另一個焦點的距離是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知經(jīng)過拋物線的焦點的直線交拋物線于兩點,滿足,則弦的中點到準線的距離為____.

查看答案和解析>>

同步練習(xí)冊答案