【題目】下列命題(1條斜線段長相等,則他們在平面內的射影長也相等;(2)直線不在平面內,他們在平面內的射影是兩條平行直線,則;(3)與同一平面所成的角相等的兩條直線平行;(4)一條直線與一個平面所成的角是,那么它與平面內任何其他直線所成的角都不小于;其中正確的命題序號是____________

【答案】4

【解析】

1)(2)(3)根據(jù)數(shù)形結合,直觀想象判斷;(4)通過圖象,構造線面角和線與其他線所成的角,通過這兩個角的余弦值的大小判斷角的關系.

1條斜線長相等,但與平面所成角不相等時,那么他們在平面內的射影長也不相等,故(1)錯誤;

2)如圖,直線在平面內的兩條射影平行,但不一定平行,故(2)錯誤;

3)與同一平面所成角相等的兩條直線平行或相交,故(3)錯誤;

如圖:直線與平面所成角相等,相交

4)如圖,平面是平面的斜線,是平面內以外的任一條直線,,,連接,

,

平面,

,

,,

中,

,

都在區(qū)間,

,

當直線重合時,,

當直線時,直線與平面內的任意條直線所成的角都是

當線在平面內或與平面平行時,線與平面所成的角是,

綜上:,故(4)正確.

故答案為:(4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABDA1B1C1D1中四邊形A1B1C1D1,ADD1A1ABB1A1均為正方形.點MBD的中點.點H在線段C1M上,且A1H與平面ABD所成角的正弦值為

(Ⅰ)證明:B1D1∥平面BC1D

(Ⅱ)求二面角AA1HB的的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為.數(shù)列滿足,.

1)若,且,求正整數(shù)的值;

2)若數(shù)列均是等差數(shù)列,求的取值范圍;

3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)已知兩個變量線性相關,若它們的相關性越強,則相關系數(shù)的絕對值越接近于1.

2)線性回歸直線必過點;

3)對于分類變量AB的隨機變量,越大說明AB有關系的可信度越大.

4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關指數(shù)的值越大,說明擬合的效果越好.

5)根據(jù)最小二乘法由一組樣本點,求得的回歸方程是,對所有的解釋變量,的值一定與有誤差.

以上命題正確的序號為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點作圓的兩條切線,切點分別為,直線恰好經過橢圓C的右頂點和上頂點.

1)求橢圓C方程;

2)過橢圓C左焦點F的直線l交橢圓C兩點,橢圓上存在一點P,使得四邊形為平行四邊形,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐中,,,,點上,且

1)證明:;

2)在棱上是否存在一點,使三棱錐是正三棱錐?證明你的結論.

3)求以為棱,為面的二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠對一批產品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100102),[102104),[104,106],已知樣本中產品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數(shù)是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,直線,直線與橢圓交于不同的兩點,點和點關于軸對稱,直線軸交于點

1)若點是橢圓的一個焦點,求該橢圓的長軸的長度;

2)若,且,求的值;

3)若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l1kx-y+4=0與直線l2x+ky-3=0相交于點P,則當實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為( 。

A.2B.C.D.

查看答案和解析>>

同步練習冊答案