【題目】某市A,B,C,D四所中學(xué)報(bào)名參加某高校2015年自主招生考試的學(xué)生人數(shù)如下表所示:
中學(xué) | A | B | C | D |
人數(shù) | 40 | 30 | 10 | 20 |
該市教委為了解參加考試的學(xué)生的學(xué)習(xí)狀況,采用分層抽樣的方法從四所中學(xué)報(bào)名參加考試的學(xué)生中隨機(jī)抽取50名參加問卷調(diào)查.則A,B,C,D四所中學(xué)抽取的學(xué)生人數(shù)分別為( )
A.15,20,10,5B.15,20,5,10
C.20,15,10,5D.20,15,5,10
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的直線與圓相交于A,B兩點(diǎn).
(1)若,求直線AB的方程;
(2)設(shè)線段AB的中點(diǎn)為M,求點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級(jí)學(xué)生參加了數(shù)學(xué)測(cè)試,年級(jí)組織任課教師對(duì)這次考試進(jìn)行成績(jī)分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?/span>40分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)估計(jì)這次月考數(shù)學(xué)成績(jī)的平均分和眾數(shù);
(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績(jī)?cè)趨^(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, // , , , 為的中點(diǎn).
(1)求證: ;
(2)求證: //平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,橢圓:與直線交橢圓于,兩點(diǎn).
(Ⅰ)若直線經(jīng)過橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足,.求證:為定值;
(Ⅱ)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,如圖所示點(diǎn)為橢圓上任意三點(diǎn).
(Ⅰ)若,是否存在實(shí)數(shù),使得代數(shù)式為定值.若存在,求出實(shí)數(shù)和的值;若不存在,說明理由.
(Ⅱ)若,求三角形面積的最大值;
(Ⅲ)滿足(Ⅱ),且在三角形面積取得最大值的前提下,若線段與橢圓長(zhǎng)軸和短軸交于點(diǎn)(不是橢圓的頂點(diǎn)).判斷四邊形的面積是否為定值.若是,求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的慈善公益活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在小時(shí)內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng).若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請(qǐng)另外個(gè)人參與這項(xiàng)活動(dòng).假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某參與者接受挑戰(zhàn)后,對(duì)其他個(gè)人發(fā)出邀請(qǐng),則這個(gè)人中至少有個(gè)人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀者的性別是否有關(guān),某調(diào)查機(jī)構(gòu)進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:
根據(jù)表中數(shù)據(jù),能否有%的把握認(rèn)為“冰桶挑戰(zhàn)賽與受邀者的性別有關(guān)”?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,點(diǎn)(an,an+1)在直線y=x+2上,且首項(xiàng)a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=a1,b2=a2,數(shù)列{bn}的前n項(xiàng)和為Tn,請(qǐng)寫出適合條件Tn≤Sn的所有n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB∥CD,CD=2AB,E為PC的中點(diǎn),且∠PAB=∠PDC=90°.
(Ⅰ)證明:BE∥平面PAD;
(Ⅱ)證明:平面PAB⊥平面PAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com