【題目】如圖,在四棱錐P-ABCD中,ABCD,CD=2AB,EPC的中點,且∠PAB=PDC=90°

(Ⅰ)證明:BE∥平面PAD;

(Ⅱ)證明:平面PAB⊥平面PAD

【答案】(Ⅰ)見解析(Ⅱ)見解析

【解析】

(Ⅰ)取PD的中點F,連接AF,EF證明,即可得證BE∥平面PAD.

(Ⅱ)證明,即可證明平面PAD,問題得證。

證明:(I)取PD的中點F,連接AF,EF

E,F分別是PC,PD的中點,

EFCD,又ABCD,

EFAB

∴四邊形ABEF是平行四邊形,

AFBE,又AF平面PAD,BE平面PAD

BE∥平面PAD

II)∵∠PDC=90°,∴PDDC

ABCD,

ABPD,

∵∠PAB=90°,∴PAAB,

PA平面PAD,PD平面PADPAPD=P,

AB⊥平面PAD,又AB平面PAB

∴平面PAD⊥平面PAB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市A,B,CD四所中學(xué)報名參加某高校2015年自主招生考試的學(xué)生人數(shù)如下表所示:

中學(xué)

A

B

C

D

人數(shù)

40

30

10

20

該市教委為了解參加考試的學(xué)生的學(xué)習(xí)狀況,采用分層抽樣的方法從四所中學(xué)報名參加考試的學(xué)生中隨機(jī)抽取50名參加問卷調(diào)查.AB,C,D四所中學(xué)抽取的學(xué)生人數(shù)分別為(

A.1520,10,5B.15,20,5,10

C.2015,10,5D.20,15,5,10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺ABCDA1B1C1D1中,AA1⊥底面ABCD,四邊形ABCD為菱形,∠BAD=120°,ABAA1=2A1B1=2.

(1)若MCD中點,求證:AM⊥平面AA1B1B;

(2)求直線DD1與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列共有k項,且同時滿足,,則稱數(shù)列數(shù)列.

1)若等比數(shù)列數(shù)列,求的值;

2)已知為給定的正整數(shù),且,

①若公差為的等差數(shù)列數(shù)列,求公差d

②若數(shù)列的通項公式為,其中常數(shù),判斷數(shù)列是否為數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市(如圖)的東偏南方向300千米的海面處,并以20千米/時的速度向西偏北45°方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60千米,并以10千米/時的速度不斷增大,問幾個小時后該城市開始受到臺風(fēng)的侵襲?受到臺風(fēng)的侵襲的時間有多少小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】治理大氣污染刻不容緩,根據(jù)我國分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級,對應(yīng)于空氣質(zhì)量指數(shù)的六個級別,指數(shù)越大,級別越高,說明污染越嚴(yán)重,對人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)小于時,可以戶外運動;空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶外活動,以下是某市月中旬的空氣質(zhì)量指數(shù)情況:

時間

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

AQI

149

143

251

254

138

55

69

102

243

269

(1)求月中旬市民不適合進(jìn)行戶外活動的概率;

(2)一外地游客在月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線過點,且傾斜角為,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求圓的直角坐標(biāo)方程及直線的參數(shù)方程;

(2)設(shè)直線與圓的兩個交點分別為, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴(yán)重污染

該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.

(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?

(Ⅱ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為1000元,空氣質(zhì)量等量等級為3級時每天需凈化空氣的費用為2000元.若從這10天樣本中空氣質(zhì)量為1級、2級、3級的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用為3000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:

(1)y關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,當(dāng)價格x=40/kg,日需求量y的預(yù)測值為多少?

參考公式:線性回歸方程,其中,.

查看答案和解析>>

同步練習(xí)冊答案