在直角坐標(biāo)系中,點P是曲線C上任意一點,點P到兩點,的距離之和等于4,直線與C交于A,B兩點.
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值。
(Ⅰ)設(shè)P(x,y),由橢圓定義可知,點P的軌跡C是以為焦點,長半軸為2的橢圓.它的短半軸,故曲線C的方程為
(Ⅱ)設(shè),其坐標(biāo)滿足
消去y并整理得,故
,即.而
于是,化簡得,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線,當(dāng)過軸上一點的直線與拋物線交于兩點時,為銳角,則的取值范圍 (      )
A.B.C.D.以上選項都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的焦點為F、頂點為O、準(zhǔn)線與對稱軸的交點為K,分別過F、O、K的三條平行直線被拋物線所截得的弦長依次為,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若直線l:與拋物線交于A、B兩點,O點是坐標(biāo)原點。
(1)當(dāng)時,求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過定點;并求出這個定點坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 設(shè)拋物線C1x2=4y的焦點為F,曲線C2與C1關(guān)于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PAPB,切點AB,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準(zhǔn)線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線過點,則點到此拋物線的焦點的距離為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P是曲線上的一個動點,則點P到點的距離與點P的距離之和的最小值為                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線y2=2px(p>0)的焦點F作傾角為45°的直線交拋物線于A、B兩點,若線段AB的長為8,則p=________

查看答案和解析>>

同步練習(xí)冊答案