分析 (1)直線l的極坐標方程為ρsin($\frac{π}{3}$-θ)=$\frac{\sqrt{3}}{2}$,展開可得:$\frac{\sqrt{3}}{2}$ρcosθ-$\frac{1}{2}$ρsinθ=$\frac{\sqrt{3}}{2}$,把x=ρcosθ,y=ρsinθ代入即可化為直角坐標方程.曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù),0≤α≤π),利用cos2α+sin2α=1可得普通方程.
(2)設(shè)P$(cosα,\sqrt{3}sinα)$,點P到直線l的距離d=$\frac{|\sqrt{6}cos(α+\frac{π}{4})-\sqrt{3}|}{2}$,當且僅當$cos(α+\frac{π}{4})$=-1,即α=$\frac{3π}{4}$時取得最大值.
解答 解:(1)直線l的極坐標方程為ρsin($\frac{π}{3}$-θ)=$\frac{\sqrt{3}}{2}$,展開可得:$\frac{\sqrt{3}}{2}$ρcosθ-$\frac{1}{2}$sinθ=$\frac{\sqrt{3}}{2}$,化為$\sqrt{3}$x-y=$\sqrt{3}$.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù),0≤α≤π),可得普通方程:${x}^{2}+\frac{{y}^{2}}{3}$=1.$(0≤y≤\sqrt{3})$.
(2)設(shè)P$(cosα,\sqrt{3}sinα)$,點P到直線l的距離d=$\frac{|\sqrt{3}cosα-\sqrt{3}sinα-\sqrt{3}|}{2}$=$\frac{|\sqrt{6}cos(α+\frac{π}{4})-\sqrt{3}|}{2}$≤$\frac{\sqrt{6}+\sqrt{3}}{2}$,當且僅當$cos(α+\frac{π}{4})$=-1,即α=$\frac{3π}{4}$時取等號.
點評 本題考查了極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、點到直線的距離公式、直線與橢圓相切的充要條件、三角函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com