5.已知點C在圓O直徑BE的延長線上,CA切圓O于A點,CD分別交AE、AB于點F、D,∠ADF=45°.
(1)求證:CD為∠ACB的平分線;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

分析 (1)判斷出△ADF為等腰直角三角形,根據(jù)弦切角定理,三角形外角定理,及圓周角定理的推論,即可得出結(jié)論;
(2)若AB=AC,結(jié)合(1)的結(jié)論,我們可得△ABC三個角分別為30°,30°,120°,解三角形,即可得到$\frac{AC}{BC}$的值.

解答 (1)證明:∵CA切圓O于A點,
∴由弦切角定理,可得∠CAE=∠B
∵BE為圓O的直徑
∴∠DAF=90°
∵∠ADF=45°,
∴∠ADF=∠AFD
∴∠ACD+∠CAE=∠B+∠BCD
∴∠ACD=∠BCD,
∴CD為∠ACB的角平分線;
(2)解:若AB=AC,則∠CAE=∠B=∠ACB=30°
則$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$.

點評 本題考查的知識點是圓周角定理,弦切角定理,三角形外角定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.利用“二分法”判斷方程①3x2-lnx=0;②x+lnx=0;③x3-3x2+3x-4=0;④x+$\frac{1}{x}$=2中在區(qū)間(0,1)內(nèi)有實數(shù)解,則方程的序號為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=a(a>0),AC=2,AA1=1,點D在棱B1C1

(1)若點D為棱B1C1的中點(如圖1),求證:AC1∥平面A1BD;
(2)若B1D:DC1=1:3(如圖2),試問:當(dāng)a為何值時,直線BB1與平面A1BD所成角的大小為30°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin($\frac{π}{3}$-θ)=$\frac{\sqrt{3}}{2}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù),0≤α≤π)
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動點,求點P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在極坐標(biāo)系下,點(2,$\frac{π}{6}$)到直線ρcos(θ-$\frac{2π}{3}$)=1的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=-cos2x-2tsinx+2t2-6t+2(x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)-1≤t≤1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的取值范圍.
(3)問a取何值時,方程g(sinx)=a-5sinx在[0,2π)上有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a=2${\;}^{\frac{4}{3}}}$,b=3${\;}^{\frac{2}{3}}}$,c=25${\;}^{\frac{1}{3}}}$,則a,b,c按從小到大的順序排列為b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.$n=\overline{abc}$表示一個三位數(shù),記f(n)=(a+b+c)+(a×b+b×c+a×c)+a×b×c,如f(123)=(1+2+3)+(1×2+1×3+2×3)+1×2×3=23,則滿足f(n)=n的三位數(shù)共有9個.

查看答案和解析>>

同步練習(xí)冊答案