【題目】來自某校一班和二班的共計9名學(xué)生志愿服務(wù)者被隨機平均分配到運送礦泉水、清掃衛(wèi)生、維持秩序這三個崗位服務(wù),且運送礦泉水崗位至少有一名一班志愿者的概率是.
(Ⅰ)求清掃衛(wèi)生崗位恰好一班1人、二班2人的概率;
(Ⅱ)設(shè)隨機變量為在維持秩序崗位服務(wù)的一班的志愿者的人數(shù),求分布列及期望.
【答案】(Ⅰ); (Ⅱ)見解析.
【解析】試題分析:(Ⅰ)首先設(shè)一班志愿者有人,那么二班有人,至少有一名一班志愿者的概率就是 ,求出人數(shù)后,再計算清掃衛(wèi)生崗位的3人中恰好一班1人,二班2人的概率;(Ⅱ) 可取的數(shù)值為0,1,2,3,根據(jù)超幾何分布寫出其概率 和分布列.
試題解析:(Ⅰ)記“至少一名一班志愿者被分到運送礦泉水崗位”為事件,則的對立事件為“沒有一班志愿者被分到運送礦泉水崗位”,
設(shè)有一班志愿者個, ,那么,解得,即來自一班的志愿者有5人,來自二班志愿者4人;
記“清掃衛(wèi)生崗位恰好一班1人,二班2人”為事件,
那么,
所有清掃衛(wèi)生崗位恰好一班1人,二班2人的概率是.
(Ⅱ)的所有可能值為0,1,2,3.
, , ,
所以的分布列為
1 | 2 | 3 | ||
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標為,圓的方程為,動點在圓上運動,點為延長線上一點,且.
(1)求點的軌跡方程.
(2)過點作圓的兩條切線, ,分別與圓相切于點, ,求直線的方程,并判斷直線與點所在曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點,焦點F1、F2在坐標軸上,離心率為且過點(4,- ).
(1)求雙曲線方程;
(2)若點M(3,m)在雙曲線上,求證:點M在以F1F2為直徑的圓上;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2016高考北京文數(shù)】某市居民用水?dāng)M實行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費,超出w立方米的部分按10元/立方米收費.從該市隨機調(diào)查了10 000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(I)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(II)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當(dāng)w=3時,估計該市居民該月的人均水費.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=的圖像在點M(-1,f(-1))處的切線方程為x+2y+5=0,
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“丁香”和“小花”是好朋友,她們相約本周末去爬歌樂山,并約定周日早上8:00至8:30之間(假定她們在這一時間段內(nèi)任一時刻等可能的到達)在歌樂山健身步道起點處會合,若“丁香”先到,則她最多等待“小花”15分鐘.若“小花”先到,則她最多等待“丁香”10分鐘,若在等待時間內(nèi)對方到達,則她倆就一起快樂地爬山,否則超過等待時間后她們均不再等候?qū)Ψ蕉陋毰郎剑瑒t“丁香”和“小花”快樂地一起爬歌樂山的概率是(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 經(jīng)過點,左右焦點分別為、,圓與直線相交所得弦長為2.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)是橢圓上不在軸上的一個動點, 為坐標原點,過點作的平行線交橢圓于、兩個不同的點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在30瓶飲料中,有3瓶已過了保質(zhì)期.從這30瓶飲料中任取2瓶,已知所取的2瓶全在保質(zhì)期內(nèi)的概率為 ,則至少取到1瓶已過保質(zhì)期的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com