10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( 。
A、a>b>c
B、b>c>a
C、c>a>b
D、c>b>a
考點:眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:先由已知條件分別求出平均數(shù)a,中位數(shù)b,眾數(shù)c,由此能求出結果.
解答: 解:由已知得:a=
1
10
(15+17+14+10+15+17+17+16+14+12)=14.7;
b=
1
2
(15+15)
=15;
c=17,
∴c>b>a.
故選:D.
點評:本題考查平均數(shù)為,中位數(shù),眾數(shù)的求法,是基礎題,解題時要認真審題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖
OM
=2
OA
ON
=2
OB
,若
OP
滿足
OP
=x
ON
+y
OM

(1)若P在線段AB上,則x+y=
 

(2)若P在陰影部分內(nèi)(含邊界)則x+y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某算法的程序框圖如圖,若將輸出的(x,y)值一次記為(x1,y1),(x2,y2),(x3,y3)…,(xn,yn)…若程序進行中輸出的一個數(shù)對是(x,-8),則相應的x值為(  )
A、80B、81C、79D、78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a,b為實數(shù),不等式|ax+2|≥|2x+b|的解集為R的充要條件為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于x的方程x2-2x+a=0,當a為何值時:
(1)方程一根大于1,另一根小于1?
(2)方程一根在(-1,1)內(nèi),另一根在(2,3)內(nèi)?
(3)方程的兩個根都大于0?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:實數(shù)a滿足|a-1|<6,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x≥0}且A∩B=∅.
(1)求命題Q為真命題時的實數(shù)a的取值范圍;
(2)設P,Q皆為真時a的取值范圍為集合S,T={y|y=x+
m
x
,x∈R,m>0},若∁RT⊆S,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(log3x)=x2-2x+4,x∈[
1
3
,3].
(1)求f(x)的解析式及定義域;
(2)若方程f(x)=a2-3a+3有實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知函數(shù)f(x)=x3-3ax2-9a2x+a3,當a=1,求函數(shù)f(x)的極值;
(Ⅱ)設函數(shù)f(x)=(x-1)ex,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:對任意x,y∈R都有f(x+y)=f(x)+f(y)-1,已知f(1)=2
(Ⅰ)求f(0),f(-1)的值;
(Ⅱ)若x>0時,恒有f(x)>1.判斷函數(shù)f(x)在R上的單調(diào)性,并證明.
(Ⅲ)若f(1+m)<f(1-2m),求m的范圍.

查看答案和解析>>

同步練習冊答案