19.在復平面內,若復數(shù)z1和z2對應的點分別是A(-2,-1)和B(0,1),則$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.-$\frac{1}{5}$-$\frac{2}{5}$iB.-$\frac{2}{5}$-$\frac{1}{5}$iC.$\frac{1}{5}$+$\frac{2}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

分析 由復數(shù)z1和z2對應的點分別是A(-2,-1)和B(0,1),得z1=-2-i,z2=i,然后把z1,z2的值代入$\frac{{z}_{2}}{{z}_{1}}$,再由復數(shù)代數(shù)形式的乘除運算化簡,則答案可求.

解答 解:由復數(shù)z1和z2對應的點分別是A(-2,-1)和B(0,1),
得z1=-2-i,z2=i.
則$\frac{{z}_{2}}{{z}_{1}}$=$\frac{i}{-2-i}=\frac{i(-2+i)}{(-2-i)(-2+i)}$=$\frac{-1-2i}{5}=-\frac{1}{5}-\frac{2}{5}i$.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如表數(shù)據(jù):
單價x(元)34567
銷量y(件)7872696863
由表中數(shù)據(jù),求得線性回歸直線方程為$\hat y$=-6x+$\hat a$.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,若B=60°,且a,b,c成等比數(shù)列,則A=60度,C=60度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2a•sinωxcosωx+2$\sqrt{3}$cos2ωx-$\sqrt{3}$+1(a>0,ω>0)的最大值為3,最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調遞增區(qū)間.
(Ⅱ)若f(θ)=$\frac{7}{3}$,求sin(4θ+$\frac{π}{6}$)的值.
(Ⅲ)若存在區(qū)間[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6個零點,在滿足上述條件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.對(1+x)n=1+C${\;}_{n}^{1}$x+C${\;}_{n}^{2}$x2+C${\;}_{n}^{3}$x3+…+C${\;}_{n}^{n}$xn兩邊求導,可得n(1+x)n-1=C${\;}_{n}^{1}$+2C${\;}_{n}^{2}$x+3C${\;}_{n}^{3}$x2+…+nC${\;}_{n}^{n}$xn-1.通過類比推理,有(3x-2)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,可得a1+2a2+3a3+4a4+5a5+6a6=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知復數(shù)z=k-2i(k∈R)的共軛復數(shù)$\overline{z}$,且z-($\frac{1}{2}$-i)=$\frac{\overline{z}}{2}$-2i.
(Ⅰ)求k的值;
(Ⅱ)若過點(0,-2)的直線l的斜率為k,求直線l與曲線y=$\sqrt{x}$以及y軸所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項公式;
(2)令bn=3an,求證:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{4x}{{{x^2}+1}}$在區(qū)間[m,m+1]上是單調遞增函數(shù),則實數(shù)m的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在直三棱柱ABC-A1B1C1中,AB=2$\sqrt{2}$,AC=2$\sqrt{3}$,AA1=1,∠BAC=90°,D為線段BC的中點.
(1)求異面直線B1D與AC所成角的大;
(2)求二面角D-A1B1-A的大。

查看答案和解析>>

同步練習冊答案