分析 (1)利用遞推關(guān)系即可得出.
(2)利用等比數(shù)列的定義即可證明.
解答 (1)解:∵Sn=n2+n,
當(dāng)n=1時,a1=S1=2;
當(dāng)n>1時,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
綜上所述,數(shù)列{an}的通項公式為an=2n.
(2)證明:由(1)得bn=3an=32n=9n.
∴$\frac{_{n+1}}{_{n}}$=$\frac{{9}^{n+1}}{{9}^{n}}$=9為常數(shù).
則數(shù)列{bn}是以9為首項,9為公比的等比數(shù)列.
點評 本題考查了等比數(shù)列的定義、遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$-$\frac{2}{5}$i | B. | -$\frac{2}{5}$-$\frac{1}{5}$i | C. | $\frac{1}{5}$+$\frac{2}{5}$i | D. | $\frac{2}{5}$+$\frac{1}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{8}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com