【題目】已知函數(shù)f(x)是定義在(﹣8,8)上的偶函數(shù),f(x)在[0,8)上是單調(diào)函數(shù),且f(﹣3)<f(2)則下列不等式成立的是(
A.f(﹣1)<f(1)<f(3)
B.f(2)<f(3)<f(﹣4)
C.f(﹣2)<f(0)<f(1)
D.f(5)<f(﹣3)<f(﹣1)

【答案】D
【解析】解:∵f(x)是定義在(﹣8,8)上的偶函數(shù), f(x)在[0,8)上是單調(diào)函數(shù),且f(﹣3)<f(2),
∴f(x)在[0,8)上是單調(diào)遞減函數(shù),
∴f(5)<f(3)<f(1),
∴f(5)<f(﹣3)<f(﹣1),
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程x3﹣3x﹣m=0在[0,2]上有根,則實(shí)數(shù)m的取值范圍是(
A.[﹣2,2]
B.[0,2]
C.[﹣2,0]
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)大于或等于2的自然數(shù)的3次方可以做如下分解:23=3+5,33=7+9+11,43=13+15+17+19,…,根據(jù)上述規(guī)律,103的分解式中,最大的數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)正確的是(
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)至少有兩個(gè)鈍角
C.假設(shè)沒有一個(gè)鈍角
D.假設(shè)沒有一個(gè)鈍角或至少有兩個(gè)鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】202028日,在韓國(guó)首爾舉行的四大洲花樣滑冰錦標(biāo)賽雙人自由滑比賽中,中國(guó)組合隋文靜/韓聰以總分217.51分拿下四大洲賽冠軍,這也是他們第六次獲得四大洲冠軍.中國(guó)另一對(duì)組合彭程/金楊以213.29分摘得銀牌.頒獎(jiǎng)儀式上,國(guó)歌奏響!五星紅旗升起!團(tuán)結(jié)一心!中國(guó)加油!花樣滑冰錦標(biāo)賽有9位評(píng)委進(jìn)行評(píng)分,首先這9位評(píng)委給出某對(duì)選手的原始分?jǐn)?shù),評(píng)定該對(duì)選手的成績(jī)時(shí)從9個(gè)原始成績(jī)中去掉一個(gè)最高分、一個(gè)最低分,得到7個(gè)有效評(píng)分,7個(gè)有效評(píng)分與9個(gè)原始評(píng)分相比,不變的數(shù)字特征是(

A.中位數(shù)B.平均數(shù)C.方差D.極差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在空間直角坐標(biāo)系中,點(diǎn)P(1,3,6)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(
A.(1,3,﹣6 )
B.(﹣1,3,﹣6)
C.(﹣1,﹣3,6)
D.(1,﹣3,﹣6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A{x|x24x50},集合B{y|y0},則AB=(

A.{x|0x5}B.{x|5x0}C.(﹣1,+∞)D.{x|1x10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)A(1,2)且平行于直線3x+2y﹣1=0的直線方程為(
A.2x﹣3y+4=0
B.3x﹣2y+1=0
C.2x+3y﹣8=0
D.3x+2y﹣7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)定義在[0,1]上的函數(shù)fx),如果同時(shí)滿足以下三個(gè)條件:

對(duì)任意x∈[01],總有fx≥0;

②f1=1;

x1≥0x2≥0,x1+x2≤1,有fx1+x2≥fx1+fx2)成立.

則稱函數(shù)fx)為理想函數(shù).

1)判斷gx=2x1x∈[0,1])是否為理想函數(shù),并說(shuō)明理由;

2)若fx)為理想函數(shù),求fx)的最小值和最大值;

3)若fx)為理想函數(shù),假設(shè)存在x0∈[0,1]滿足f[fx0]=x0,求證:fx0=x0

查看答案和解析>>

同步練習(xí)冊(cè)答案