分析 先利用中位線將PM平移到NO,得到的銳角∠BNO就是異面直線所成的角,在三角形BNO中再利用余弦定理求出此角的余弦值即可.
解答 解:如圖
連接MB,交CN于O,則OM=$\frac{1}{2}$OB,取CE=$\frac{1}{3}$CB,連結(jié)OE,EN,MC∥OE,
∴∠NOE為異面直線CM和DN所成的角
設(shè)棱長為3,則DN=CM=$\frac{3}{2}$$\sqrt{3}$,OE=$\sqrt{3}$,ON=$\frac{\sqrt{3}}{2}$,EB=2,
利用余弦定理得
EN2=BE2+BN2-2BE•BNcos∠CBA
=($\frac{3}{2}$)2+22-2×$\frac{3}{2}×2×\frac{1}{2}$=$\frac{13}{4}$,
EN2=OE2+ON2-2OE•ONcos∠NOE,
$\frac{13}{4}$=($\frac{\sqrt{3}}{2}$)2+($\sqrt{3}$)2-$2×\frac{\sqrt{3}}{2}×\sqrt{3}$cos∠NOE
∴異面直線CM和DN所成的角的余弦值為$\frac{1}{6}$.
點評 本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高二上理周末檢測三數(shù)學試卷(解析版) 題型:填空題
在中,角,,所對的邊分別為,,,若,則角的大小為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.24 | B. | 0.32 | C. | 0.36 | D. | 0.64 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>$\frac{a+b}{2}$>$\sqrt{ab}$ | B. | a>$\frac{a+b}{2}$>$\sqrt{ab}$>b | C. | a>$\frac{a+b}{2}$>b>$\sqrt{ab}$ | D. | a>$\frac{a+b}{2}$≥$\sqrt{ab}$>b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com