15.已知函數(shù)f${\;}_{n}(x)={x}^{n}+(1-x)^{n},x∈(0,1),n∈{N}^{*}$.
(Ⅰ)求證:21-n≤fn(x)≤1;
(Ⅱ)令b${\;}_{n}=\frac{3-2lo{g}_{3}{f}_{n}(x)}{1-lo{g}_{3}{f}_{n}(x)}$,求證:b1•b2…bn$>\sqrt{{2}^{2n}(n+1)}$.

分析 (Ⅰ)求出導(dǎo)數(shù),求得單調(diào)區(qū)間,由單調(diào)性即可得證;
(Ⅱ)將bn化簡,運(yùn)用變量分離,再由(1)的結(jié)論,可得$\frac{1}{2}$bn≥$\frac{2n+1}{2n}$,由累乘法和$\frac{2n+1}{2n}$>$\frac{2n+2}{2n+1}$,運(yùn)用放縮法,即可得證.

解答 證明:(Ⅰ)f′n(x)=nxn-1-n(1-x)n-1,當(dāng)n≥2時,由f′n(x)>0可得$\frac{1}{2}$<x<1.
由f′n(x)<0可得0<x<$\frac{1}{2}$,即有fn(x)在區(qū)間(0,$\frac{1}{2}$]上單調(diào)遞減,
在[$\frac{1}{2}$,1]上單調(diào)遞增,則fn($\frac{1}{2}$)≤fn(x)≤max{fn(0),fn(1)}(n≥2),
即21-n≤fn(x)≤1;
(Ⅱ)bn=$\frac{3-2lo{g}_{2}{f}_{n}(x)}{1-lo{g}_{2}{f}_{n}(x)}$=3+$\frac{lo{g}_{2}{f}_{n}(x)}{1-lo{g}_{2}{f}_{n}(x)}$
=3+$\frac{1}{\frac{1}{lo{g}_{2}{f}_{n}(x)}-1}$,
由(Ⅰ)可得$\frac{1}{2}$bn≥$\frac{2n+1}{2n}$,
累乘,易得$\frac{1}{2}$b1•$\frac{1}{2}$b2•$\frac{1}{2}$b3…$\frac{1}{2}$bn≥$\frac{3}{2}$•$\frac{5}{4}$•$\frac{7}{6}$…$\frac{2n+1}{2n}$,
∵$\frac{2n+1}{2n}$>$\frac{2n+2}{2n+1}$,∴$\frac{3}{2}$>$\frac{4}{3}$,$\frac{5}{4}$>$\frac{6}{5}$,$\frac{7}{6}$>$\frac{8}{7}$,…,$\frac{2n+1}{2n}$>$\frac{2n+2}{2n+1}$,
∴$\frac{3}{2}$•$\frac{5}{4}$•$\frac{7}{6}$…$\frac{2n+1}{2n}$>$\frac{4}{3}$•$\frac{6}{5}$•$\frac{8}{7}$…$\frac{2n+2}{2n+1}$,
($\frac{3}{2}$•$\frac{5}{4}$•$\frac{7}{6}$…$\frac{2n+1}{2n}$)2>$\frac{3}{2}$•$\frac{4}{3}$•$\frac{5}{4}$…$\frac{2n+1}{2n}$•$\frac{2n+2}{2n+1}$=n+1,
即有$\frac{3}{2}$•$\frac{5}{4}$•$\frac{7}{6}$…$\frac{2n+1}{2n}$>$\sqrt{n+1}$,
則b1•b2…bn$>\sqrt{{2}^{2n}(n+1)}$成立.

點評 本題考查不等式的證明,注意運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,由單調(diào)性證得,同時考查累乘法的運(yùn)用,和放縮法證明不等式的方法,考查推理能力,具有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.讀如圖的程序框圖,則輸出結(jié)果是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知F是拋物線y2=2px(p>0)的焦點,G、H是拋物線上的兩點,|GF|+|HF|=3,線段GF的中點到y(tǒng)軸的距離為$\frac{5}{4}$.
(1)求拋物線的方程;
(2)如果過點P(m,0)可以作一條直線l,交拋物線于A、B兩點,交圓(x-6)2+y2=4于C、D(自上而下依次為B、D、C、A),且$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$+$\overrightarrow{PD}$,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在(x2-$\frac{1}{x}$)9的二項展開式中,常數(shù)項的值為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對于函數(shù)y=f(x),x∈D,若對任意的x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=M,則稱函數(shù)f(x)在D上的幾何平均數(shù)為M,已知f(x)=x3-x2+1,x∈[1,2],則函數(shù)f(x)=x3-x2+1在[1,2]上的幾何平均數(shù)M=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知A(1,0),P,Q是單位圓上的兩動點且滿足$\overrightarrow{OP}⊥\overrightarrow{OQ}$,則$\overrightarrow{OA}•\overrightarrow{OP}$+$\overrightarrow{OA}•\overrightarrow{OQ}$的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a,b是空間中的兩條不同的直線,α,β是兩個不同的平面,則a⊥b的一個充分條件是( 。
A.a?α,b⊥β,α∥βB.a⊥α,b⊥β,α∥βC.a∥α,b∥β,α⊥βD.a?α,b∥β,α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,在正三棱柱ABC-A1B1C1中,AB=1,CC1=$\sqrt{3}$.
(1)求證:A1B1∥平面ABC;
(2)求二面角C-AB-C1的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若tanθ=1,則sin2θ的值為( 。
A.$\frac{\sqrt{2}}{2}$B.1C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案